基于大语言模型的推荐系统(1)

        推荐系统(recommendation system)非常重要。事实上,搜索引擎,电子商务,视频,音乐平台,社交网络等等,几乎所有互联网应用的核心就是向用户推荐内容,商品,电影,音乐。推荐系统几乎无处不在。

      传统的推荐(搜索)系统就是依据各种数学算法实现,例如Google 搜索就是以MapReduce 技术而诞生的。伴随着推荐(搜索)系统的发展,也催生了各种人工智能技术出现。推荐技术的核心就是AI。这就不难理解,为什么像Google,Meta 这样的公司会如此重视发展AI技术。目前的许多推荐系统内部是基于各种神经网络,深度学习技术实现。例如Tiktok 的推荐系统就是基于TensorFlow 构建的AI 模型。

    最近,集中学习了网络上关于推荐系统技术。从TensorFlow Recommandation,TensorFlow Agent 以及Tiktok 的Monolith 推荐算法。

   推荐系统的本质是提出一个事物的特征描述,在一组事物的特征集(Feature set)中寻找与之匹配的事物。实现的基本思想是将特征用矢量来表示,然后通过计算矢量之间的差别,来寻找特征匹配的事物。 例如使用余弦相似度 。

    假设我们有一张包含书籍 1 和 2 的表格,如图 3 所示,其中包含它们的类型。对于类型表中的每个单词,我们在第二个表中创建另一列,如果该单词属于该类型,则赋予它 1,如果不是,则赋予它 0。由于我们的类型是科幻小说和小说,所以我们用这两个词创建另一个表格。如果我们绘制一个图形,其中 x 轴是科学轴,Y 轴是小说轴,我们可以将一个点与每本书关联起来。例如,书籍 1 将是蓝点,其科学轴为 1,小说轴为 1(科幻小说)。书籍 2 将是黄点,其科学轴为 0,小说轴为 1(小说)。我们从原点到这些点绘制一个矢量,我们称之为书籍矢量。

现在,我们可以看到书本向量彼此之间形成一个角度 θ。这个角度的余弦就是我们的相似度度量,它由以下公式给出:

其中AB是我们要考虑的向量,|| A || 和 || B || 是它们的范数(长度)。公式中的A i 和B i 是每个向量的分量。书籍向量 1 为 (1,1),书籍向量 2 为 (0,1)。让我们计算余弦相似度:

这说明了两件事:首先,这些向量具有一定的相似性;其次,θ 是 45º,这是我们已经预料到的,可以使用勾股定理计算出来,并使用三角形的边计算余弦值。

如果两本书都是科幻小说,那么我们将拥有相同的书籍向量 (1,1),余弦值为 1,这意味着它们是相同的。但是,如果第 1 本书是科幻小说 (1,1),第 2 本书是恐怖小说 (0,0),在这种情况下,它们没有任何共同之处,余弦值为 0。因此,相似度高意味着余弦值接近于 1,相似度低意味着余弦值接近于 0 

使用 Python 计算

我们可以列举至少两种方法来计算两个给定向量之间的余弦相似度。一种是使用 numpy:

import numpy as np
from numpy.linalg import norm 

A = np.array([1,8])
B = np.array([9,2])

cos_sim = np.dot(A,B)/(norm(A)*norm(B))
print(f"The cosine similarity is: {round(cos_sim,2)}")

打印的结果 

The cosine similarity is: 0.34

推荐系统的复杂性

从上面的例子看出来,推荐系统似乎比较简单,但是在具体的实现中工程技术是极其复杂的。

        当数据变得巨大时,数据的预处理,存储和算法的计算是十分巨大的,需要各种IT技术做支撑,例如计算机集群系统,大型消息系统,分布式数据库,并行计算,CPU/GPU 算力优化等。这些技术大多数是google 这样的大型互联网公司为了大型推荐系统发展起来的。

针对不同的应用,推荐系统的算法也不尽相同。以视频推荐系统为例:

数据主要包括:

 用户数据

   用户的基本特征:姓名,年龄,语言,爱好

  用户的观看行为:观看的视频,关注,点赞,分享,收看时长

电影数据

  电影的基本特征:标题,描述,语言

  电影的播出行为:收看的听众数量,点赞数,分享数等

推荐方法

推荐的策略可以许多种,我们列出了常见的几种:

  1.  计算用户的特征与电影的特征的相似度,列出前10个最相似的电影。
  2. 列出用户最近看过的前十部电影,计算出与这10部电影相似的电影,比如选择2部电影,一共列出10*2=20 部新的影片。
  3. 计算与用户的特征相似的其它用户,列出前10个相似的用户,找出相似用户看过的电影(每个用户选择2部),于是推荐20部电影。

LLM 时代的推荐系统

   近年来,LLM 横空出世,基于LLM 的应用层出不穷。有意思的是,LLM 也可以被认为是一种推荐系统!根据用户的Prompt ,推荐一段合适的回答。如果说LLM 加上实时数据采集,就成为了搜索引擎,传统搜索公司受到前所未有的压力。这使我在头脑中冒出了一个想法,能够使用LLM 来实现推荐系统么?这将使事情变的简单,清晰。本人觉得这是一个有意思的课题。

LLM 推荐系统的可能有两种:

  •    训练一个专业的LLM 实现推荐。
  •    利用LLM embedding ,LLM 和矢量数据库,实现的推荐系统

第一种方式不知道效果会怎么样,后一种方式已经有人做了出来。我们重点研究第二种方式。 

主要工具

  1.         利用大模型embedding 实现矢量化。
  2.         构建vector 数据库。
  3.         使用大模型的技术架构 

实时 Embedding 技术

        Embedding 潜入是针对已有的,静态的数据集构建的矢量集,例如RAG 技术,将文本向量化,将它们存储在矢量数据库,实现所谓的检索增强生成(RAG)。

     但是在实际应用中,用户,视频的特征,行为是不断变化的。比如在TikTok 的推荐系统中设置了两个模型服务器,一个用于实时训练,另一个用于推理。训练模型和推理模型定时地实现参数同步。因此,如果将LLM 技术应用于推荐系统(或者说搜索系统)的话,要构建实时embedding 机制。

从现有的一些国外文献来看,实现实时Embedding 的技术无非有两种:

真正的实时嵌入

  当用户的信息和行为发生变化的时候,就从新训练一次embedding ,并且更新生产系统中的embedding。为了提高系统的效率,可以考虑将信息分段。使用户特征变化需要更新的矢量数据最小。例如通过语言区分用户,中文用户变化时,只是更新中文用户矢量数据库。当然,实现实时嵌入的成本是很高的。

准实时嵌入

        与实时embedding的流程类似,只是将用户的特征数据暂存起来,间隔一段时间进行一次矢量库更新。

        也可以采取TikTok 的方法,设立两个矢量数据看,一个用于生产系统,一个用于实时更新。当更新达到一定的维度(例如1530) 就开始切换矢量数据库。

在实际应用中,要根据用户和电影的特点,做分段存储和更新。工程实现中有许多技术细节需要考虑。

在下一篇博文中,我们来探讨如何构建一个基于LLM 的播客推荐系统。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/973636.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

学习threejs,使用MeshBasicMaterial基本网格材质

👨‍⚕️ 主页: gis分享者 👨‍⚕️ 感谢各位大佬 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍⚕️ 收录于专栏:threejs gis工程师 文章目录 一、🍀前言1.1 ☘️THREE.MeshBasicMaterial 二…

Selenium实战案例2:东方财富网股吧评论爬取

上一篇文章,我们使用Selenium完成了网页内文件的自动下载,本文我们将使用Selenium来爬取东方财富网股吧内笔记的评论数据。 网页内容分析 网页内容的分析是web自动化中的关键一步。通过分析网页结构,我们可以确定需要抓取的数据位置以及操作元素的方式。…

零基础学python--------第三节:Python的流程控制语法

Python,浮点数 11.345(单:4个字节, 双:8个字节) 。 十进制的数字25 ---> 11001 讲一个小数转化为二进制: 不断的乘以2 。取整数部分。 十进制的0.625 ----> 二进制: 0, 101 。 0.3 ---…

MKS SERVO42E57E 闭环步进电机_系列10 STM32_脉冲和串口例程

文章目录 第1部分 产品介绍第2部分 相关资料下载2.1 MKS E系列闭环步进驱动资料2.2 源代码下载2.3 上位机下载 第3部分 脉冲控制电机运行示例第4部分 读取参数示例4.1 读取电机实时位置4.2 读取电机实时转速4.3 读取电机输入脉冲数4.4 读取电机位置误差4.5 读取电机IO端口状态 …

小米路由器 AX3000T 降级后无法正常使用,解决办法

问题描述 买了个 AX3000T 路由器,想安装 OpenWRT 或者 安装 Clash 使用,看教程说是需要降级到 v1.0.47 版本。 结果刷机之后路由器无法打开了,一直黄灯亮,中间灭一下,又是黄灯长亮,没有 WIFI 没有连接。以…

强化学习-GAE方法

2016-ICLR-HIGH-DIMENSIONAL CONTINUOUS CONTROL USING GENERALIZED ADVANTAGE ESTIMATION 解决问题 强化学习的目标为最大化策略的预期总回报,其中一个主要困难为 行为对reward的影响存在一个长时间的延迟(credit assignment problem)。价…

写大论文的word版本格式整理,实现自动生成目录、参考文献序号、公式序号、图表序号

前情提要:最近开始写大论文,发现由于内容很多导致用老方法一个一个改的话超级麻烦,需要批量自动化处理,尤其是序号,在不断有增添删减的情况时序号手动调整很慢也容易出错,所以搞一个格式总结,记…

清华大学deepseek教程第四版 DeepSeek+DeepResearch 让科研像聊天一样简单(附下载)

deepseek使用教程系列 DeepSeekDeepResearch 让科研像聊天一样简单(附下载) https://pan.baidu.com/s/1VMgRmCSEzNvhLZQc8mu6iQ?pwd1234 提取码: 1234 或 https://pan.quark.cn/s/f3d4511b790a

面阵工业相机提高餐饮业生产效率

餐饮行业是一个快节奏、高要求的领域,该领域对生产过程中每一个阶段的效率和准确性都有很高的要求。在食品加工、包装、质量控制和库存管理等不同生产阶段实现生产效率的优化是取得成功的关键步骤。面阵工业相机能够一次性捕捉对象的二维区域图像,并支持…

Linux基础开发工具的使用(apt、vim、gcc、g++、gdb、make、makefile)

Linux软件包管理器–apt Linux安装软件的方式 在Linux下安装软件的方法有以下三种: 下载到程序的源代码,自己编译出可执行程序获取deb安装包、然后使用dpkg命令安装。(不解决依赖关系)通过apt进行安装软件。 小知识点&#xf…

【vue项目如何利用event-stream实现文字流式输出效果】

引言 在现代 Web 应用中,实时数据展示是一个常见需求,例如聊天消息逐字显示、日志实时推送、股票行情更新等。传统的轮询或一次性数据加载方式无法满足这类场景的流畅体验,而 流式传输(Streaming) 技术则能实现数据的…

算法——Boyer-Moore算法

引言 在字符串匹配算法中,Boyer-Moore算法以其高效性和巧妙的设计而著称。它广泛用于文本搜索、编译器词法分析、信息检索等领域。本文将详细解读Boyer-Moore算法的原理、步骤,并通过实践案例展示其应用。 Boyer-Moore算法简介 Boyer-Moore算法是一种…

智能网络感知,打造极致流畅的鸿蒙原生版中国移动云盘图文体验

背景 中国移动云盘(原“和彩云网盘”)是中国移动重磅推出的安全、智能、不限速、移动用户免流的智能云盘,致力于成为5G时代用户个人与家庭的数字资产管理中心,是中国移动继语音、短信、流量后的“第四项基础服务”。 照片、音视…

Windows 快速搭建C++开发环境,安装C++、CMake、QT、Visual Studio、Setup Factory

安装C 简介 Windows 版的 GCC 有三个选择: CygwinMinGWmingw-w64 Cygwin、MinGW 和 mingw-w64 都是在 Windows 操作系统上运行的工具集,用于在 Windows 环境下进行开发和编译。 Cygwin 是一个在 Windows 上运行的开源项目,旨在提供类Uni…

VS Code 如何搭建C/C++开发环境

目录 1.VS Code是什么 2. VS Code的下载和安装 2.1 下载和安装 2.2.1 下载 2.2.2 安装 2.2 环境的介绍 2.3 安装中文插件 3. VS Code配置C/C开发环境 3.1 下载和配置MinGW-w64编译器套件 3.1.1 下载 3.1.2 配置 3.2 安装C/C插件 3.3 重启VSCode 4. 在VSCode上编写…

2024年国赛高教杯数学建模A题板凳龙闹元宵解题全过程文档及程序

2024年国赛高教杯数学建模 A题 板凳龙闹元宵 原题再现 “板凳龙”,又称“盘龙”,是浙闽地区的传统地方民俗文化活动。人们将少则几十条,多则上百条的板凳首尾相连,形成蜿蜒曲折的板凳龙。盘龙时,龙头在前领头&#x…

详解同为科技桌面PDU系列产品特点

同为科技的桌面PDU系列产品是依据自身在电气联接领域25年专业积累并精心设计,产品采用模块化结构,实现各种功能、输出插口、输入方式可根据用户需求以模块组合的方式构建定制化产品。 桌面PDU产品特点 工业级材质和结构设计 桌面PDU系列产品采用一体成…

【排版教程】如何在Word/WPS中优雅的插入参考文献

材料展示 随便选取一段综述内容,以及对应的参考文献,如下图所示: 1 参考文献编辑 首先对参考文献部分进行编辑,将其设置自动编号 在段落中,选择悬挂缩进 在编号中,设置自定义编号,然后按照…

STM32 看门狗

目录 背景 独立看门狗(IWDG) 寄存器访问保护 窗口看门狗(WWDG) 程序 独立看门狗 设置独立看门狗程序 第一步、使能对独立看门狗寄存器的写操作 第二步、设置预分频和重装载值 第三步、喂狗 第四步、使能独立看门狗 喂狗…

【第二节】C++设计模式(创建型模式)-抽象工厂模式

目录 引言 一、抽象工厂模式概述 二、抽象工厂模式的应用 三、抽象工厂模式的适用场景 四、抽象工厂模式的优缺点 五、总结 引言 抽象工厂设计模式是一种创建型设计模式,旨在解决一系列相互依赖对象的创建问题。它与工厂方法模式密切相关,但在应用…