大数据-154 Apache Druid 架构与原理详解 基础架构、架构演进

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

  • Hadoop(已更完)
  • HDFS(已更完)
  • MapReduce(已更完)
  • Hive(已更完)
  • Flume(已更完)
  • Sqoop(已更完)
  • Zookeeper(已更完)
  • HBase(已更完)
  • Redis (已更完)
  • Kafka(已更完)
  • Spark(已更完)
  • Flink(已更完)
  • ClickHouse(已更完)
  • Kudu(已更完)
  • Druid(正在更新…)

章节内容

上节我们完成了如下的内容:

  • Apache Druid 从 Kafka 中加载数据
  • 实际测试 可视化操作

在这里插入图片描述

基础架构

在这里插入图片描述

Coordinator Node

主要负责历史节点的数据负载均衡,以及通过规则管理数据的生命周期,协调节点告诉历史节点加载新数据、卸载过期数据、复制数据、负责均衡移动数据
Coordinator是周期运行的(由 druid.coordinator.period 配置指定,默认间隔60秒),Coordinator需要维护和ZooKeeper的连接,以获取集群的信息。Segment和Rule的信息保存在元数据中,所以也需要维护与元数据库的连接。

Overlord Node

进程监视MiddleManager进程,并且是Druid数据摄入的主节点,负责将提取任务分配给MiddleManagers并协调Segment发布,包括接受、拆解、分配Task,以及创建Task相关的锁,并返回Task的状态。

Historical Node

加载生成好的数据文件,以供数据查询。Historical Node是整个集群查询性能的核心所在,Historical会承担绝大部分的Segment查询。

  • Historical 进程从 Deep Storage 中下载 Segment,并响应有关这些Segment的查询请求(这些请求来自Broker进程)
  • Historical 进程不处理写入请求
  • Historical 进程采用了无共享架构设计,它知道如何去加载和删除 Segment,以及如何基于 Segment 来响应查询。即便底层的深度存储无法正常工作,Historical 进程还是能针对其已同步的 Segments,正常提供查询服务。
  • 底层的深度存储无法正常工作,Historical进程还是能针对其已同步的 Segments,正常提供查询服务。

MiddleManager Node

及时摄入实时数据,生成Segment数据文件

  • MiddleManager 进程是执行提交任务的工作节点,MiddleManagers将任务转发给在不同JVM中运行的Peon进程
  • MiddleManager、Peon、Task的对应关系是:每个Peon进程一次只能运行一个Task任务,但一个MiddleManager却可以管理多个Peon进程

Broker Node

接收客户端查询请求,并将这些查询转发给 Histo 和 MiddleManagers。当Brokers从这些子查询中收到结果时,它们会合并这些结果并将它们返回给调用者。

  • Broker 节点负责转发Client查询请求的
  • Broker 通过 ZooKeeper 能够知道哪个 Segment 在哪些节点上,将查询转发给相应节点
  • 所有节点返回数据后,Broker会所有节点的数据进行合并,然后返回给Client

Router Node

(可选)
负责将路由转发到Broker、Coordinator、Overlords

  • Router进程可以在 Broker、Overlords、Coordinator进程之上,提供一层统一的API网关
  • Router进程是可选的,如果集群数据规模已经到达了TB级别,需要考虑启动(druid.router.managerProxy.enable=true)
  • 一旦集群规模达到一定数量级,那么发生故障的概率就会变得不容忽视,而Router支持将请求只发送给健康的节点,避免请求失败。
  • 同时,查询的响应时间和资源消耗,也会随着数据量的增长而变高,而Router支持设置查询的优先级和负载均衡策略,避免了大查询造成的队列堆积或查询热点等问题

如何分类

Druid的进程可以被任意部署,为了理解与部署组织方便,这些进程分为了三类:

  • Master:Coordinator、Overlord 负责数据可用性和摄取
  • Query:Broker、Router 负责处理外部请求
  • Data:Historical、MiddleManager,负责实际的Ingestion负载和数据存储

其他依赖

Deep Storage
存放生成的 Segment 数据文件,并供历史服务器下载,对于单节点集群可以是本地磁盘,而对于分布式集群一般是HDFS。

  • Druid使用 Deep Storage来做数据的备份,也作为Druid进程之间在后台传输数据的一种方式
  • 当相应查询时,Historical首先从本地磁盘读取预取的段,这也意味着需要在Deep Storage和加载的数据Historical中拥有足够的磁盘空间。

Metadata Storage

存储Durid集群的元数据信息,如Segment的相关信息,一般使用MySQL。

ZooKeeper

为Durid集群提供以执行协调任务,如内部服务的监控,协调和领导者选举

  • Coordinator 节点的 Leader 选举
  • Historical 节点发布 Segment 的协议
  • Coordinator 和 Historical 之间 load、drop Segment的协议
  • Orverlord节点的Leader选举
  • Overlord和MiddleManger之间Task管理

架构演进

初始版本~0.6.0

2012-2013年
在这里插入图片描述

0.7.0~0.12.0

2013年-2018年

在这里插入图片描述

集群管理

在这里插入图片描述

0.13.0~当前版本

在这里插入图片描述

Lambda架构

从大的架构上看,Druid是一个Lambda架构。
Lambda架构是由Storm坐着Nathan Marz提出的一个实时大数据处理框架,Lambda架构设计是为了处理大规模数据时,同时发挥流处理和批处理的优势:

  • 通过批处理提供全面、准确的数据
  • 通过流处理提供低延迟的数据
    从而达到平衡延迟、吞吐量和容错性的目的,为了满足下游的及时查询,批处理和流处理的结果会合并。

Lambda架构包含三层:BatchLayer、SpeedLayer、Serving Layer

  • BatchLayer:批处理层,对离线的历史数据进行预计算,为了下游能够快速查询想要的结果,由于批处理基于完成的历史数据集,准确性可以得到保证,批处理层可以用Hadoop、Spark、Flink等框架计算。
  • SpeedLayer:加速处理层,处理实时的增量数据,这一层重点在于低延迟,加速层的数据不如批处理层那样完整和准确,但是可以填补批处理高延迟导致的数据空白。加速层可以使用Storm、Spark Streaming和Flink等框架计算。
  • ServingLayer:合并层,将历史数据、实时数据合并在一起,输出到数据库或者其他介质,供下游分析

在这里插入图片描述

流式数据链路

Raw Data - Kafka - Streaming Processor(Optional 实时ETL)- Kafka(Optional)- Druid - Application/User

批处理数据链路

Raw data - Kafka(Optional) - HDFS - ETL Process(Optional)- Druid - Application/User

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/885952.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

最大正方形 Python题解

最大正方形 题目描述 在一个 n m n\times m nm 的只包含 0 0 0 和 1 1 1 的矩阵里找出一个不包含 0 0 0 的最大正方形,输出边长。 输入格式 输入文件第一行为两个整数 n , m ( 1 ≤ n , m ≤ 100 ) n,m(1\leq n,m\leq 100) n,m(1≤n,m≤100),接…

[Linux]开发环境搭建

RPM和YUM 安装JDK 安装Tomcat 安装IDEA 安装MySql

2-109 基于matlab-GUI的BP神经网络

基于matlab-GUI的BP神经网络,10种不同分布的数据样本,9种不同的激活函数,可更改升级网络结构参数,对比各种方法参数下的训练测试效果,实时显示预测过程。程序已调通,可直接运行。 下载源程序请点链接&…

以Flask为基础的虾皮Shopee“曲线滑块验证码”识别系统部署

以Flask为基础的虾皮Shopee“曲线滑块验证码”识别系统部署 一、验证码类型二、简介三、Flask应用 一、验证码类型 验证码类型:此类验证码存在两个难点,一是有右侧有两个凹槽,二是滑块的运动轨迹不是直线的,而是沿着曲线走的&…

AI驱动TDSQL-C Serverless 数据库技术实战营-与AI的碰撞

目录 一、简介 二、实验介绍 三、结果展示 四、实操指导 4.1 系统设计 4.2 环境搭建(手把手教程) 4.3 应用构建 4.4 效果展示 4.5 踩坑避雷总结 五、清理资源 5.1 删除TDSQL-C Serverless 5.2 删除 HAI 算力 六、实验总结归纳 一、简介 本…

SpringBoot上传图片实现本地存储以及实现直接上传阿里云OSS

一、本地上传 概念&#xff1a;将前端上传的文件保存到自己的电脑 作用&#xff1a;前端上传的文件到后端&#xff0c;后端存储的是一个临时文件&#xff0c;方法执行完毕会消失&#xff0c;把临时文件存储到本地硬盘中。 1、导入文件上传的依赖 <dependency><grou…

用于高频交易预测的最优输出LSTM

用于高频交易预测的最优输出LSTM J.P.Morgan的python教程 Content 本文提出了一种改进的长短期记忆&#xff08;LSTM&#xff09;单元&#xff0c;称为最优输出LSTM&#xff08;OPTM-LSTM&#xff09;&#xff0c;用于实时选择最佳门或状态作为最终输出。这种单元采用浅层拓…

Elasticsearch:使用 LLM 实现传统搜索自动化

作者&#xff1a;来自 Elastic Han Xiang Choong 这篇简短的文章是关于将结构化数据上传到 Elastic 索引&#xff0c;然后将纯英语查询转换为查询 DSL 语句&#xff0c;以使用特定过滤器和范围搜索特定条件。完整代码位于此 Github repo 中。 首先&#xff0c;运行以下命令安装…

Apache POI 2024/10/2

导入Apache POI的maven坐标 通过POI向Excel文件写入文件内容 package com.sky.test;import org.apache.poi.xssf.usermodel.XSSFRow; import org.apache.poi.xssf.usermodel.XSSFSheet; import org.apache.poi.xssf.usermodel.XSSFWorkbook;import java.io.File; import java.…

【C++并发入门】opencv摄像头帧率计算和多线程相机读取(下):完整代码实现

前言 高帧率摄像头往往应用在很多opencv项目中&#xff0c;今天就来通过简单计算摄像头帧率&#xff0c;抛出一个单线程读取摄像头会遇到的问题&#xff0c;同时提出一种解决方案&#xff0c;使用多线程对摄像头进行读取。上一期&#xff1a;【C并发入门】摄像头帧率计算和多线…

1.5 测试用例

欢迎大家订阅【软件测试】 专栏&#xff0c;开启你的软件测试学习之旅&#xff01; 文章目录 前言1 测试用例介绍2 测试用例编写3 案例分析4 执行测试用例 前言 测试用例的设计和编制是软件活动中最重要的工作。本文详细讲解了测试用例的基本概念以及如何编写测试用例。 本篇文…

深入掌握 Protobuf 与 RPC 的高效结合:实现C++工程中的高效通信

目录 一、Protobuf与RPC框架的通信流程概述二、Protobuf与RPC在C中的实际应用2.1 定义 .proto 文件2.2 编译 .proto 文件生成C代码2.3 实现服务器端逻辑2.4 实现客户端逻辑2.5 使用CMake构建工程2.6 编译与运行2.7 关键组件解析2.8 序列化与反序列化的实现 三、关键实现与解析四…

Redis: Sentinel哨兵监控架构及环境搭建

概述 在主从模式下&#xff0c;我们通过从节点只读模式提高了系统的并发能力并发不断增加&#xff0c;只需要扩展从节点即可&#xff0c;只要主从服务器之间&#xff0c;网络连接正常主服务器就会将写入自己的数据同步更新给从服务器&#xff0c;从而保证主从服务器的数据相同…

网络安全 DVWA通关指南 DVWA Weak Session IDs(弱会话)

DVWA Weak Session IDs&#xff08;弱会话&#xff09; 文章目录 DVWA Weak Session IDs&#xff08;弱会话&#xff09;Low LevelMedium LevelHigh LevelImpossible Level 参考文献 WEB 安全靶场通关指南 相关阅读 Brute Force (爆破) Command Injection&#xff08;命令注入…

C# 无边框窗体,加阴影效果、多组件拖动、改变大小等功能完美实现优化版效果体验

一、预览效果 国庆节第一天,祝祖国繁荣昌盛! 1.1 效果图 (WinForm无边框窗体,F11可全屏) 拖动窗体时半透明效果(拖动时参考窗体后面释放位置) 说明:本功能的实现基于网友的原型完善而来,更多代码可以参考他的文章 h

Golang | Leetcode Golang题解之第449题序列化和反序列化二叉搜索树

题目&#xff1a; 题解&#xff1a; type Codec struct{}func Constructor() (_ Codec) { return }func (Codec) serialize(root *TreeNode) string {arr : []string{}var postOrder func(*TreeNode)postOrder func(node *TreeNode) {if node nil {return}postOrder(node.Le…

量产小妙招---向量间的Project和Product

1 背景 在日常工作中&#xff0c;不管是在感知或者规控&#xff0c;或者其它的模块中&#xff0c;经常需要处理两个向量之间的关系&#xff0c;这就引入了本篇博客和读者朋友们讨论的一个话题&#xff1a;Project和Product。 2 Project和Product 向量间的Project和Product在定义…

C++语言学习(2): name lookup 的概念

何谓 name lookup C 中很重要的一个概念&#xff1a;name lookup。 当编译器在遇到一个 name 的时候&#xff0c; 会做查找&#xff08;lookup&#xff09;&#xff0c;会把引入这个 name 的声明和它关联起来&#xff0c;具体来说&#xff0c;又包含两种类型的 lookup&#xf…

【学习笔记】手写 Tomcat 八

目录 一、NIO 1. 创建 Tomcat NIO 类 2. 启动 Tomcat 3. 测试 二、解析请求信息 三、响应数据 创建响应类 修改调用的响应类 四、完整代码 五、测试 六、总结 七、获取全部用户的功能 POJO 生成 POJO 1. 在 Dao 层定义接口 2. 获取用户数据 3. 在 Service 层定…

ArcGIS与ArcGIS Pro去除在线地图服务名单

我们之前给大家分享了很多在线地图集&#xff0c;有些地图集会带有制作者信息&#xff0c;在布局制图的时候会带上信息影响出图美观。 一套GIS图源集搞定&#xff01;清新规划底图、影像图、境界、海洋、地形阴影图、导航图 比如ArcGIS&#xff1a; 比如ArcGIS Pro&#xff1a…