最大正方形 Python题解

最大正方形

题目描述

在一个 n × m n\times m n×m 的只包含 0 0 0 1 1 1 的矩阵里找出一个不包含 0 0 0 的最大正方形,输出边长。

输入格式

输入文件第一行为两个整数 n , m ( 1 ≤ n , m ≤ 100 ) n,m(1\leq n,m\leq 100) n,m(1n,m100),接下来 n n n 行,每行 m m m 个数字,用空格隔开, 0 0 0 1 1 1

输出格式

一个整数,最大正方形的边长。

样例 #1

样例输入 #1

4 4
0 1 1 1
1 1 1 0
0 1 1 0
1 1 0 1

样例输出 #1

2

题解

这道题AcWing、洛谷和leetCode都有,只是输入还有输出的些微区别,这里只提供洛谷的Python代码,思路是一样的。

这道题其实不难看出来可以用动态规划做,但是我做这道题的时候是有人要求我先用前缀和做一遍了,所以我这里提供两种思路

1、前缀和

这道题前缀和做法其实很简单,就是看我们想要通过求的正方形的前缀和来求该正方形的面积,如果求出来的面积与正方形边长平方相等,那么这个边长的正方形就满足要求

if 通过前缀和求的面积 == 正方形边长 ** 2:
	return True

在这里插入图片描述
怎么通过前缀和求矩形面积呢?我们可以通过下面公式来计算:
i 2 , j 2 i_2, j_2 i2,j2 为矩形右下角, i 1 , j 1 = i 2 − l e n S q u a r e + 1 , j 2 − l e n S q u a r e + 1 i_1, j_1 = i_2 - lenSquare + 1, j_2 - lenSquare + 1 i1,j1=i2lenSquare+1,j2lenSquare+1 为矩形左上角,那么通过前缀和求矩形面积公式为:
S i z e ( S q u a r e ) = P r e f i x [ i 2 ] [ j 2 ] − P r e f i x [ i 1 − 1 ] [ j 2 ] − P r e f i x [ i 2 ] [ j 1 − 1 ] + P r e f i x [ i 1 − 1 ] [ j 1 − 1 ] Size(Square) =Prefix[i_2][j_2] -Prefix[i_1-1][j_2]-Prefix[i_2][j_1-1] +Prefix[i_1-1][j_1-1] Size(Square)=Prefix[i2][j2]Prefix[i11][j2]Prefix[i2][j11]+Prefix[i11][j11]

下面这张图为上图的前缀和矩阵:
在这里插入图片描述
那么穷举求出每种正方形边长的情况,我们就可以得到可能的正方形边长

欸,别急,直接穷举正方形边长还是慢了,正方形边长是从小到大穷举的,我们可以使用二分来加速对边长的举证:

if mid正方边长满足要求:
	我们去找是否存在更大的边长满足要求:left = mid + 1
else:
	mid长度都不符合要求的,直接去找更小的边长了: right = mid - 1

最后得出Python代码(时间复杂度为 O ( N 2 l o g 2 N ) O(N^2log_2N) O(N2log2N)):

def judge(lenEdge, Prefix):
    global N, M
    for i in range(lenEdge, N+1):
        for j in range(lenEdge, M+1):
            if Prefix[i][j] - Prefix[i-lenEdge][j] - Prefix[i][j-lenEdge] + Prefix[i-lenEdge][j-lenEdge] == lenEdge**2:
                return True
    else:
        return False


N, M = map(int, input().strip().split())
A = [[0 for _ in range(M+1)]]
for i in range(1, N+1):
    tmp = [0]
    tmp.extend(map(int, input().strip().split()))
    A.append(tmp)
Prefix = [[0 for _ in range(M+1)] for _ in range(N+1)]
for i in range(1, N+1):
    for j in range(1, M+1):
        Prefix[i][j] = Prefix[i-1][j] + Prefix[i][j-1] - Prefix[i-1][j-1] + A[i][j]
left, right = 0, min(N, M)
ans = 0
while left <= right:
    mid = (left + right) // 2
    if judge(mid, Prefix):
        ans = max(ans, mid)
        left = mid + 1
    else:
        right = mid - 1
print(ans)

在这里插入图片描述

2、动态规划法

动态规划法的想法更容易想到,这里用图来说明一下:

在这里插入图片描述

定义 i , j i,j i,j为正方形的左下角坐标,且 d p [ i ] [ j ] dp[i][j] dp[i][j]存的是该正方形的边长
( 4 , 4 ) (4,4) (4,4)代表的正方形的边长可以从红色、蓝色、绿色,( ( 3 , 3 ) , ( 3 , 4 ) , ( 4 , 3 ) (3,3),(3,4),(4,3) (3,3),(3,4),(4,3))三种颜色的正方形来得出,
可以看出来,黑色框出正方形边长为1+1 = 2,通过多画图推导,得出下面的公式:
d p [ i ] [ j ] = m i n ( d p [ i − 1 ] [ j ] , d p [ i ] [ j − 1 ] , d p [ i − 1 ] [ j − 1 ] ) + 1 dp[i][j] = min(dp[i-1][j],dp[i][j-1],dp[i-1][j-1]) + 1 dp[i][j]=min(dp[i1][j],dp[i][j1],dp[i1][j1])+1

时间复杂度为 O ( N 2 ) O(N^2) O(N2)

N, M = map(int, input().strip().split())
A = [[0 for _ in range(M)]] + [[0] + list(map(int, input().strip().split())) for _ in range(N)]
dp = [[0 for _ in range(M+1)] for _ in range(N+1)]
ans = 0
for i in range(1, N+1):
    for j in range(1, M+1):
        if A[i][j] == 1:
            dp[i][j] = min(dp[i-1][j], dp[i][j-1], dp[i-1][j-1]) + 1
            ans = max(ans, dp[i][j])
print(ans)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/885951.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

[Linux]开发环境搭建

RPM和YUM 安装JDK 安装Tomcat 安装IDEA 安装MySql

2-109 基于matlab-GUI的BP神经网络

基于matlab-GUI的BP神经网络&#xff0c;10种不同分布的数据样本&#xff0c;9种不同的激活函数&#xff0c;可更改升级网络结构参数&#xff0c;对比各种方法参数下的训练测试效果&#xff0c;实时显示预测过程。程序已调通&#xff0c;可直接运行。 下载源程序请点链接&…

以Flask为基础的虾皮Shopee“曲线滑块验证码”识别系统部署

以Flask为基础的虾皮Shopee“曲线滑块验证码”识别系统部署 一、验证码类型二、简介三、Flask应用 一、验证码类型 验证码类型&#xff1a;此类验证码存在两个难点&#xff0c;一是有右侧有两个凹槽&#xff0c;二是滑块的运动轨迹不是直线的&#xff0c;而是沿着曲线走的&…

AI驱动TDSQL-C Serverless 数据库技术实战营-与AI的碰撞

目录 一、简介 二、实验介绍 三、结果展示 四、实操指导 4.1 系统设计 4.2 环境搭建&#xff08;手把手教程&#xff09; 4.3 应用构建 4.4 效果展示 4.5 踩坑避雷总结 五、清理资源 5.1 删除TDSQL-C Serverless 5.2 删除 HAI 算力 六、实验总结归纳 一、简介 本…

SpringBoot上传图片实现本地存储以及实现直接上传阿里云OSS

一、本地上传 概念&#xff1a;将前端上传的文件保存到自己的电脑 作用&#xff1a;前端上传的文件到后端&#xff0c;后端存储的是一个临时文件&#xff0c;方法执行完毕会消失&#xff0c;把临时文件存储到本地硬盘中。 1、导入文件上传的依赖 <dependency><grou…

用于高频交易预测的最优输出LSTM

用于高频交易预测的最优输出LSTM J.P.Morgan的python教程 Content 本文提出了一种改进的长短期记忆&#xff08;LSTM&#xff09;单元&#xff0c;称为最优输出LSTM&#xff08;OPTM-LSTM&#xff09;&#xff0c;用于实时选择最佳门或状态作为最终输出。这种单元采用浅层拓…

Elasticsearch:使用 LLM 实现传统搜索自动化

作者&#xff1a;来自 Elastic Han Xiang Choong 这篇简短的文章是关于将结构化数据上传到 Elastic 索引&#xff0c;然后将纯英语查询转换为查询 DSL 语句&#xff0c;以使用特定过滤器和范围搜索特定条件。完整代码位于此 Github repo 中。 首先&#xff0c;运行以下命令安装…

Apache POI 2024/10/2

导入Apache POI的maven坐标 通过POI向Excel文件写入文件内容 package com.sky.test;import org.apache.poi.xssf.usermodel.XSSFRow; import org.apache.poi.xssf.usermodel.XSSFSheet; import org.apache.poi.xssf.usermodel.XSSFWorkbook;import java.io.File; import java.…

【C++并发入门】opencv摄像头帧率计算和多线程相机读取(下):完整代码实现

前言 高帧率摄像头往往应用在很多opencv项目中&#xff0c;今天就来通过简单计算摄像头帧率&#xff0c;抛出一个单线程读取摄像头会遇到的问题&#xff0c;同时提出一种解决方案&#xff0c;使用多线程对摄像头进行读取。上一期&#xff1a;【C并发入门】摄像头帧率计算和多线…

1.5 测试用例

欢迎大家订阅【软件测试】 专栏&#xff0c;开启你的软件测试学习之旅&#xff01; 文章目录 前言1 测试用例介绍2 测试用例编写3 案例分析4 执行测试用例 前言 测试用例的设计和编制是软件活动中最重要的工作。本文详细讲解了测试用例的基本概念以及如何编写测试用例。 本篇文…

深入掌握 Protobuf 与 RPC 的高效结合:实现C++工程中的高效通信

目录 一、Protobuf与RPC框架的通信流程概述二、Protobuf与RPC在C中的实际应用2.1 定义 .proto 文件2.2 编译 .proto 文件生成C代码2.3 实现服务器端逻辑2.4 实现客户端逻辑2.5 使用CMake构建工程2.6 编译与运行2.7 关键组件解析2.8 序列化与反序列化的实现 三、关键实现与解析四…

Redis: Sentinel哨兵监控架构及环境搭建

概述 在主从模式下&#xff0c;我们通过从节点只读模式提高了系统的并发能力并发不断增加&#xff0c;只需要扩展从节点即可&#xff0c;只要主从服务器之间&#xff0c;网络连接正常主服务器就会将写入自己的数据同步更新给从服务器&#xff0c;从而保证主从服务器的数据相同…

网络安全 DVWA通关指南 DVWA Weak Session IDs(弱会话)

DVWA Weak Session IDs&#xff08;弱会话&#xff09; 文章目录 DVWA Weak Session IDs&#xff08;弱会话&#xff09;Low LevelMedium LevelHigh LevelImpossible Level 参考文献 WEB 安全靶场通关指南 相关阅读 Brute Force (爆破) Command Injection&#xff08;命令注入…

C# 无边框窗体,加阴影效果、多组件拖动、改变大小等功能完美实现优化版效果体验

一、预览效果 国庆节第一天,祝祖国繁荣昌盛! 1.1 效果图 (WinForm无边框窗体,F11可全屏) 拖动窗体时半透明效果(拖动时参考窗体后面释放位置) 说明:本功能的实现基于网友的原型完善而来,更多代码可以参考他的文章 h

Golang | Leetcode Golang题解之第449题序列化和反序列化二叉搜索树

题目&#xff1a; 题解&#xff1a; type Codec struct{}func Constructor() (_ Codec) { return }func (Codec) serialize(root *TreeNode) string {arr : []string{}var postOrder func(*TreeNode)postOrder func(node *TreeNode) {if node nil {return}postOrder(node.Le…

量产小妙招---向量间的Project和Product

1 背景 在日常工作中&#xff0c;不管是在感知或者规控&#xff0c;或者其它的模块中&#xff0c;经常需要处理两个向量之间的关系&#xff0c;这就引入了本篇博客和读者朋友们讨论的一个话题&#xff1a;Project和Product。 2 Project和Product 向量间的Project和Product在定义…

C++语言学习(2): name lookup 的概念

何谓 name lookup C 中很重要的一个概念&#xff1a;name lookup。 当编译器在遇到一个 name 的时候&#xff0c; 会做查找&#xff08;lookup&#xff09;&#xff0c;会把引入这个 name 的声明和它关联起来&#xff0c;具体来说&#xff0c;又包含两种类型的 lookup&#xf…

【学习笔记】手写 Tomcat 八

目录 一、NIO 1. 创建 Tomcat NIO 类 2. 启动 Tomcat 3. 测试 二、解析请求信息 三、响应数据 创建响应类 修改调用的响应类 四、完整代码 五、测试 六、总结 七、获取全部用户的功能 POJO 生成 POJO 1. 在 Dao 层定义接口 2. 获取用户数据 3. 在 Service 层定…

ArcGIS与ArcGIS Pro去除在线地图服务名单

我们之前给大家分享了很多在线地图集&#xff0c;有些地图集会带有制作者信息&#xff0c;在布局制图的时候会带上信息影响出图美观。 一套GIS图源集搞定&#xff01;清新规划底图、影像图、境界、海洋、地形阴影图、导航图 比如ArcGIS&#xff1a; 比如ArcGIS Pro&#xff1a…

.Net 基于IIS部署blazor webassembly或WebApi

1.安装IIS(若安装&#xff0c;请忽略) 选择:控制面板–>程序–>程序和功能 选择:启动或关闭Windows功能&#xff0c;勾选相关项&#xff0c;再点击确定即可。 2.安装Hosting Bundle 以.net6为例&#xff0c;点击连接https://dotnet.microsoft.com/en-us/download/dot…