【AI】深度学习的数学--核心公式

1 梯度下降

f ( x + Δ x , y + Δ y ) ≃ f ( x , y ) + ∂ f ( x , y ) ∂ x Δ x + ∂ f ( x , y ) ∂ y Δ y f(x+\Delta x,y+\Delta y) \simeq f(x,y)+\frac{\partial f(x,y)}{\partial x}\Delta x+\frac{\partial f(x,y)}{\partial y}\Delta y f(x+Δx,y+Δy)f(x,y)+xf(x,y)Δx+yf(x,y)Δy

Δ z = f ( x + Δ x , y + Δ y ) − f ( x , y ) ≃ ∂ f ( x , y ) ∂ x Δ x + ∂ f ( x , y ) ∂ y Δ y \Delta z =f(x+\Delta x,y+\Delta y)-f(x,y) \simeq \frac{\partial f(x,y)}{\partial x}\Delta x+\frac{\partial f(x,y)}{\partial y}\Delta y Δz=f(x+Δx,y+Δy)f(x,y)xf(x,y)Δx+yf(x,y)Δy

Δ z ≃ ∂ f ( x , y ) ∂ x Δ x + ∂ f ( x , y ) ∂ y Δ y \Delta z \simeq \frac{\partial f(x,y)}{\partial x}\Delta x+\frac{\partial f(x,y)}{\partial y}\Delta y Δzxf(x,y)Δx+yf(x,y)Δy

Δ z ≃ ( ∂ f ( x , y ) ∂ x , ∂ f ( x , y ) ∂ y ) ( Δ x , Δ y ) \Delta z \simeq (\frac{\partial f(x,y)}{\partial x},\frac{\partial f(x,y)}{\partial y})(\Delta x,\Delta y) Δz(xf(x,y),yf(x,y))(Δx,Δy)

Δ z ≃ ( ∂ z ∂ x , ∂ z ∂ y ) ⋅ ( Δ x , Δ y ) = ∇ z ⋅ ( Δ x , Δ y ) \Delta z \simeq (\frac{\partial z}{\partial x},\frac{\partial z}{\partial y})\cdot (\Delta x,\Delta y)=\nabla z \cdot (\Delta x,\Delta y) Δz(xz,yz)(Δx,Δy)=z(Δx,Δy)

如果想要让z的下降速度最快就要保证两个向量方向完全相反,也就是要保证如下公式成立

( Δ x , Δ y ) = − η ∇ z (\Delta x,\Delta y) = -\eta \nabla z (Δx,Δy)=ηz

2 NN误差反向传播

参数w和b的梯度表示

∂ C ∂ w j i l = δ j l a i l − 1 , ∂ C ∂ b j l = δ j l ( l = 2 , 3... ) \frac{\partial C}{\partial w^{l}_{ji}}=\delta ^l_j a^{l-1}_i,\frac{\partial C}{\partial b^{l}_{j}}=\delta ^l_j(l=2,3...) wjilC=δjlail1,bjlC=δjl(l=2,3...)

δ的计算方法

输出层的误差反向传播计算方法,此处L代表输出层

δ j L = ∂ C ∂ a j L a ′ ( z j L ) \delta^L_j=\frac{\partial C}{\partial a^L_j}a'(z^L_j) δjL=ajLCa(zjL)

C = 1 2 { ( t 1 − a 1 L ) 2 + ( t 2 − a 2 L ) 2 } C=\frac{1}{2}\{ (t_1-a^L_1)^2+(t_2-a^L_2)^2 \} C=21{(t1a1L)2+(t2a2L)2}

δ j L = ∂ C ∂ a j L a ′ ( z j L ) = ( a j L − t j ) a ′ ( z j L ) \delta^L_j=\frac{\partial C}{\partial a^L_j}a'(z^L_j)=(a^L_j-t_j)a'(z^L_j) δjL=ajLCa(zjL)=(ajLtj)a(zjL)

隐藏层的误差反向传播计算方法,层l和下一层l+1的递推关系,m为层l+1的神经单元个数,l为大于等于2的整数

δ i l = ( δ 1 l + 1 w 1 i l + 1 + δ 2 l + 1 w 2 i l + 1 + . . . + δ m l + 1 w m i l + 1 ) a ′ ( z i l ) \delta ^l _i = (\delta ^{l+1} _1 w ^{l+1} _{1i} + \delta ^{l+1} _2 w^{l+1} _{2i}+...+ \delta ^{l+1} _m w^{l+1} _{mi})a'(z^l _i) δil=(δ1l+1w1il+1+δ2l+1w2il+1+...+δml+1wmil+1)a(zil)

输出层的神经单元误差

δ j 3 = ∂ C ∂ z j 3 = ∂ C ∂ a j 3 ∂ a j 3 ∂ z j 3 = ∂ C ∂ a j 3 a ′ ( z j 3 ) \delta^3_j = \frac{\partial C}{\partial z^3_j}=\frac{\partial C}{\partial a^3_j} \frac{\partial a^3_j}{\partial z^3_j}=\frac{\partial C}{\partial a^3_j}a'(z^3_j) δj3=zj3C=aj3Czj3aj3=aj3Ca(zj3)

隐藏层的神经单元误差
在这里插入图片描述

δ i 2 = ( δ 1 3 w 1 i 3 + δ 2 3 w 2 i 3 ) a ′ ( z i 2 ) ( i = 1 , 2 , 3 ) \delta ^2 _i = (\delta ^3 _1 w ^3 _{1i} + \delta ^3 _2 w^3 _{2i})a'(z^2 _i)(i=1,2,3) δi2=(δ13w1i3+δ23w2i3)a(zi2)(i=1,2,3)

3 CNN误差反向传播

在这里插入图片描述

输出层的梯度分量

在这里插入图片描述

∂ C ∂ w O n k − i j = δ n O a i j P k , ∂ C ∂ b O n = δ n O \frac{\partial C}{\partial w ^{On}}_{k-ij}=\delta ^O _n a^{Pk}_{ij},\frac{\partial C}{\partial b ^{O}}_{n}=\delta ^O _n wOnCkij=δnOaijPk,bOCn=δnO

n为输出层神经单元的编号,k为池化层子层编号,ij为池化子层神经单元行列编号(i,j=1,2)

卷积层的梯度分量

在这里插入图片描述

∂ C ∂ w i j F k = δ 11 F k x i j + δ 12 F k x i j + 1 + . . . + δ 44 F k x i + 3 j + 3 \frac{\partial C}{\partial w^{Fk}_{ij}}=\delta ^{Fk}_{11}x_{ij}+\delta ^{Fk}_{12}x_{ij+1}+...+\delta ^{Fk}_{44}x_{i+3j+3} wijFkC=δ11Fkxij+δ12Fkxij+1+...+δ44Fkxi+3j+3

k为过滤器的编号,ij为过滤器行列的编号(i,j=1,2,3)
在这里插入图片描述

∂ C ∂ b F k = δ 11 F k + δ 12 F k + . . . + δ 44 F k \frac{\partial C}{\partial b^{Fk}}=\delta ^{Fk}_{11}+\delta ^{Fk}_{12}+...+\delta ^{Fk}_{44} bFkC=δ11Fk+δ12Fk+...+δ44Fk

k为过滤器的编号

输出层δ的计算方法

δ n O = ∂ C ∂ z n O = ∂ C ∂ a n O ∂ a n O ∂ z n O = ∂ C ∂ a n O a ′ ( z n O ) \delta ^O_n=\frac{\partial C}{\partial z^O_n}=\frac{\partial C}{\partial a^O_n}\frac{\partial a^O_n}{\partial z^O_n}=\frac{\partial C}{\partial a^O_n}a'(z^O_n) δnO=znOC=anOCznOanO=anOCa(znO)

n为输出层神经单元的编号

C = 1 2 { ( t 1 − a 1 O ) 2 + ( t 2 − a 2 O ) 2 + ( t 3 − a 3 O ) 2 } C=\frac{1}{2}\{ (t_1-a^O_1)^2+(t_2-a^O_2)^2+(t_3-a^O_3)^2 \} C=21{(t1a1O)2+(t2a2O)2+(t3a3O)2}

δ n O = ( a n O − t n ) a ′ ( z n O ) \delta ^O_n=(a_n^O-t_n)a'(z_n^O) δnO=(anOtn)a(znO)

以上为代价函数示例及其导数,带入δ式可得

∂ C ∂ a n O = a n O − t n ( n = 1 , 2 , 3 ) \frac{\partial C}{\partial a^O_n}=a_n^O-t_n(n=1,2,3) anOC=anOtnn=1,2,3

求导数得

卷积层δ的计算方法

δ i j F k = { δ 1 O w k − i ′ j ′ O 1 + δ 2 O w k − i ′ j ′ O 2 + δ 3 O w k − i ′ j ′ O 3 } × ( 当 a i j F k 在区块中为最大值时为 1 否则为 0 ) × a ′ ( z i j F k ) \delta ^{Fk}_{ij}=\{\delta ^{O}_{1}w^{O1}_{k-i'j'}+\delta ^{O}_{2}w^{O2}_{k-i'j'}+\delta ^{O}_{3}w^{O3}_{k-i'j'}\}\times(当a^{Fk}_{ij}在区块中为最大值时为1否则为0)\times a'(z^{Fk}_{ij}) δijFk={δ1OwkijO1+δ2OwkijO2+δ3OwkijO3}×(aijFk在区块中为最大值时为1否则为0)×a(zijFk)

k为卷积层子层的编号,ij为卷积层神经单元的编号,i’j’是卷积层i行j列神经单元连接池化层神经单元的位置
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/884457.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

MySQL 性能剖析全攻略

在使用 MySQL 数据库的过程中,性能问题往往是让开发者和管理员头疼的难题。为了有效地解决这些问题,我们需要对 MySQL 进行性能剖析。那么,如何在 MySQL 中进行性能剖析呢?本文将为你详细介绍。 一、为什么要进行性能剖析&#x…

基于安卓开发大型体育场管理系统的设计与实现(源码+定制+讲解)

博主介绍: ✌我是阿龙,一名专注于Java技术领域的程序员,全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师,我在计算机毕业设计开发方面积累了丰富的经验。同时,我也是掘金、华为云、阿里云、InfoQ等平台…

《开题报告》基于SpringBoot框架的高校专业实习管理系统开题报告的设计与实现源码++学习文档+答辩讲解视频

开题报告 研究背景 在当今高等教育日益普及与深化的背景下,高校专业实习作为学生将理论知识转化为实践能力、提前适应社会工作环境的重要环节,其重要性不言而喻。然而,传统的高校专业实习管理模式往往存在信息不对称、流程繁琐、效率低下、…

SSM+Vue共享单车管理系统

目录 1 项目介绍2 项目截图3 核心代码3.1 Controller3.2 Service3.3 Dao3.4 spring-mybatis.xml3.5 spring-mvc.xml3.5 Vue 4 数据库表设计5 文档参考6 计算机毕设选题推荐7 源码获取 1 项目介绍 博主个人介绍:CSDN认证博客专家,CSDN平台Java领域优质创作…

代码随想录_刷题记录_第四次

二叉树 — 理论基础 种类: 满二叉树(所有层的节点都是满的,k:深度 节点数量:2^k - 1)完全二叉树(除了最后一层,其余层全满,并且最后一层从左到右连续)二叉搜…

信道衰落的公式

对于天线: 对于天线的面积计算: 天线的接收功率密度: 天线的接收功率: 移动无线信道(I) (xidian.edu.cn)https://web.xidian.edu.cn/zma/files/20150710_153736.pdf 更加常用的考虑了额外的信道衰落pathlo…

2024 maya的散布工具sppaint3d使用指南

目前工具其实可以分为三个版本 1 最老的原版 时间还是2011年的,只支持python2版的maya 2 作者python3更新版 后来作者看maya直到2022上还是没有类似好用方便的工具,于是更新到了2022版本 这个是原作者更新的2022版本,改成了python3&#…

敏感字段加密 - 华为OD统一考试(E卷)

2024华为OD机试(E卷+D卷+C卷)最新题库【超值优惠】Java/Python/C++合集 题目描述 【敏感字段加密】给定一个由多个命令字组成的命令字符串: 1、字符串长度小于等于127字节,只包含大小写字母,数字,下划线和偶数个双引号; 2、命令字之间以一个或多个下划线 进行分割; 3、可…

Study-Oracle-10-ORALCE19C-RAC集群搭建(一)

一、硬件信息及配套软件 1、硬件设置 RAC集群虚拟机:CPU:2C、内存:10G、操作系统:50G Openfile数据存储:200G (10G*2) 2、网络设置 主机名公有地址私有地址VIP共享存储(SAN)rac1192.168.49.13110.10.10.20192.168.49.141192.168.49.130rac2192.168.49.13210.10.10.3…

单体到微服务架构服务演化过程

架构服务化 聊聊从单体到微服务架构服务演化过程 单体分层架构 在 Web 应用程序发展的早期,大部分工程是将所有的服务端功能模块打包到单个巨石型(Monolith)应用中,譬如很多企业的 Java 应用程序打包为 war 包,最终会形…

JSP(Java Server Pages)基础使用二

简单练习在jsp页面上输出出乘法口诀表 既然大家都是来看这种代码的人了&#xff0c;那么这种输出乘法口诀表的这种简单算法肯定是难不住大家了&#xff0c;所以这次主要是来说jsp的使用格式问题。 <%--Created by IntelliJ IDEA.User: ***Date: 2024/7/18Time: 11:26To ch…

线性表二——栈stack

第一题 #include<bits/stdc.h> using namespace std; stack<char> s; int n; string ced;//如何匹配 出现的右括号转换成同类型的左括号&#xff0c;方便我们直接和栈顶元素 char cheak(char c){if(c)) return (;if(c]) return [;if(c}) return {;return \0;/…

css边框修饰

一、设置线条样式 通过 border-style 属性设置&#xff0c;可选择的一些属性如下&#xff1a; dotted&#xff1a;点线 dashed&#xff1a;虚线 solid&#xff1a;实线 double&#xff1a;双实线 效果如下&#xff1a; 二、设置边框线宽度 ① 通过 border-width 整体设置…

【深度学习】深度卷积神经网络(AlexNet)

在 LeNet 提出后&#xff0c;卷积神经网络在计算机视觉和机器学习领域中很有名气&#xff0c;但并未起到主导作用。 这是因为 LeNet 在更大、更真实的数据集上训练的性能和可行性还有待研究。 事实上&#xff0c;在 20 世纪 90 年代到 2012 年之间的大部分时间里&#xff0c;…

时间技能物品竞品抢拍拍卖发布h5公众号小程序开源版开发

时间技能物品竞品抢拍拍卖发布h5公众号小程序开源版开发 利用新型营销方式&#xff0c;将闲置的物品通过拍卖&#xff0c;让价格一提再提让用户趣在其中&#xff0c;营造一种不一样的购物体验! 拍卖列表页 列表页采用多分类&#xff0c;广告轮播及流动公告和拍卖商品列表组成…

神经网络(二):卷积神经网络

文章目录 一、图像的本质1.1单通道图像&#xff1a;灰度图1.2多通道图像 二、卷积神经网络2.1基本结构2.2卷积层2.2.1卷积操作2.2.2填充padding2.2.3步幅strides2.2.4多通道图像卷积&#xff1a;单卷积核2.2.5多通道图像卷积&#xff1a;多卷积核2.2.5卷积层的参数与激活函数 2…

【qt】QQ仿真项目1

一览全局: QQ仿真项目 一.创建项目添加资源文件二.创建数据库三.自定义标题栏Qt类四.加载样式表标题栏按钮的搭配五.标题栏实现移动窗体六.标题栏按钮连接信号槽七.标题栏双击最大化和还原八.基类窗口实现标题栏按钮信号九.重写基类窗口绘图事件确保设置样式表生效十.用户登录界…

Leetcode 1235. 规划兼职工作

1.题目基本信息 1.1.题目描述 你打算利用空闲时间来做兼职工作赚些零花钱。 这里有 n 份兼职工作&#xff0c;每份工作预计从 startTime[i] 开始到 endTime[i] 结束&#xff0c;报酬为 profit[i]。 给你一份兼职工作表&#xff0c;包含开始时间 startTime&#xff0c;结束时…

第二十节:学习Redis缓存数据库实现增删改查(自学Spring boot 3.x的第五天)

这节记录下如何使用redis缓存数据库。 第一步&#xff1a; 先在服务器端安装redis&#xff0c; 下载地址&#xff1a;Releases tporadowski/redis GitHub。 第二步&#xff1a; 安装redis客户端可视化管理软件redisDesktopmanager Redis Desktop Manager - Download 第…

革命题材网络电影《突进夹金山》将于10月上线

“长征万里险&#xff0c;最忆夹金山”。这座雪山不仅见证了红军战士们的英勇与牺牲&#xff0c;也成为了中国革命历史上的一座重要里程碑。 革命题材网络电影《突进夹金山》&#xff0c;作为四川省2024年度重点影视剧项目以及纪念红军长征90周年献礼的红色作品&#xff0c;由谢…