单体到微服务架构服务演化过程

架构服务化

聊聊从单体到微服务架构服务演化过程

单体分层架构

在 Web 应用程序发展的早期,大部分工程是将所有的服务端功能模块打包到单个巨石型(Monolith)应用中,譬如很多企业的 Java 应用程序打包为 war 包,最终会形成如下的架构:

alt

巨石型应用易于搭建开发环境、易于测试、易于部署;其缺陷也非常明显,无法进行局部改动与部署,编译时间过长,回归测试周期过长,开发效率降低等。集中式架构分为标准的三层:数据访问层、服务层和 Web 层。

在 Web2.0 时代刚刚流行的时候,互联网应用与企业级应用并没有本质的区别,集中式架构分为标准的三层:数据访问层、服务层和 Web 层。

  • 数据访问层用于定义数据访问接口,实现对真实数据库的访问;
  • 服务层用于对应用业务逻辑进行处理;
  • Web 层用于处理异常、逻辑跳转控制、页面渲染模板等。

面向服务架构 - SOA

SOA(Service-Oriented Architecture) 面向服务架构,是在互联网应用规模迅速增长,集中式架构已无法做到无限制地提升系统的吞吐量的背景下,产生的涉及模块化开发、分布式扩展部署等相对宽泛的概念。

SOA 是一个组件模型,它将应用程序的不同功能单元(称为服务)通过这些服务之间定义良好的接口和契约联系起来。SOA 中的接口独立于实现服务的硬件平台、操作系统和编程语言,采用中立的方式进行定义。这使得构建在各种各样的系统中的服务可以以一种统一和通用的方式进行交互。面向服务架构,它可以根据需求通过网络对松散耦合的粗粒度应用组件进行分布式部署、组合和使用。服务层是 SOA 的基础,可以直接被应用调用,从而有效控制系统中与软件代理交互的人为依赖性。

实施 SOA 的关键目标是实现企业 IT 资产的最大化作用。要实现这一目标,就要在实施 SOA 的过程中牢记以下特征:可从企业外部访问、随时可用、粗粒度的服务接口分级、松散耦合、可重用的服务、服务接口设计管理、标准化的服务接口、支持各种消息模式、精确定义的服务契约。

alt

服务消费者(Service Consumer)可以通过发送消息来调用服务,这些消息由一个服务总线(Service Bus)转换后发送给适当的服务实现。这种服务架构可以提供一个业务规则引(Business Rules Engine),该引擎容许业务规则被合并在一个服务里或多个服务里。这种架构也提供了一个服务管理基础(Service Management Infrastructure),用来管理服务,类似审核,列表(billing),日志等功能。此外,该架构给企业提供了灵活的业务流程,更好地处理控制请求(Regulatory Requirement),例如 Sarbanes Oxley(SOX),并且可以在不影响其他服务的情况下更改某项服务。

由于分布式系统十分复杂,因此产生了大量的用于简化分布式系统开发的分布式中间件和分布式数据库,服务化的架构设计理念也被越来越多的公司所认同。如下是 Dubbo 官方文档公布了一张有关 SOA 系统演化过程的图片:

alt

微服务架构 - Microservices

微服务(Microservices Architecture Pattern)由 Martin Fowler 在 2014 年提出的,是希望将某个单一的单体应用,转化为多个可以独立运行、独立开发、独立部署、独立维护的服务或者应用的聚合,从而满足业务快速变化及分布式多团队并行开发的需求。如康威定律(Conway’s Law)所言,任何组织在设计一套系统(广义概念)时,所交付的设计方案在结构上都与该组织的通信结构保持一致,微服务与微前端不仅仅是技术架构的变化,还包含了组织方式、沟通方式的变化。

alt

对于微服务,不同背景的人也有不同的见解,对于熟悉 SOA 的开发者,微服务也可以认为是去除了 ESB 的 SOA 的一种实现方案;ESB 是 SOA 架构中的中心总线,设计图形应该是星形的,而微服务是去中心化的分布式软件架构。SOA 更多强调重用,而微服务偏向于重写。SOA 偏向水平服务,微服务偏向垂直服务;SOA 偏向自上而下的设计,微服务偏向自下而上的设计。

alt

微服务与微前端原理和软件工程,面向对象设计中的原理同样相通,都是遵循单一职责(Single Responsibility)、关注分离(Separation of Concerns)、模块化(Modularity)与分而治之(Divide & Conquer)等基本的原则。从巨石型应用到微服务的衍化也并非一蹴而就,如下图也演示了简单的渐进式替代过程:

alt
alt

云原生架构 - Cloud Native

云原生是通过构建团队、文化和技术,利用自动化和架构来管理系统的复杂性和解放生产力。 — Joe Beda,Heotio CTO,联合创始人

alt

Pivotal 是云原生应用的提出者,并推出了 Pivotal Cloud Foundry 云原生应用平台和 Spring 开源 Java 开发框架,成为云原生应用架构中先驱者和探路者。早在 2015 年 Pivotal 公司的 Matt Stine 写了一本叫做迁移到云原生应用架构的小册子,其中探讨了云原生应用架构的几个主要特征:符合 12 Factors 应用、面向微服务架构、自服务敏捷架构、基于 API 的协作以及抗脆弱性。2015 年 Google 主导成立了云原生计算基金会(CNCF),起初 CNCF 对云原生(Cloud Native)的定义包含以下三个方面:应用容器化、面向微服务架构、应用支持容器的编排调度。

alt

云原生应用程序简单地定义为从头开始为云计算架构而构建应用程序;这意味着,如果我们将应用程序设计为预期将部署在分布式、可扩展的基础架构上,我们的应用程序就是云原生的。随着公共云将承载越来越多的算力,未来云计算将是主流的 IT 能力交付方式,CNCF 也对云原生进行了重新定义:云原生技术有利于各组织在公有云、私有云和混合云等新型动态环境中,构建和运行可弹性扩展的应用;云原生的代表技术包括容器、服务网格、微服务、不可变基础设施和声明式 API。

  • Codeless 对应的是服务开发,实现了源代码托管,你只需要关注你的代码实现,而不需要关心你的代码在哪,因为在整个开发过程中你都不会感受到代码库和代码分支的存在。
  • Applicationless 对应的是服务发布,在服务化框架下,你的服务发布不再需要申请应用,也不需要关注你的应用在哪。
  • Serverless 对应的则是服务运维,有了 Serverless 化能力,你不再需要关注你的机器资源,Servlerless 会帮你搞定机器资源的弹性扩缩容 这些技术组合搭配,能够构建容错性好、易于管理和便于观察的松耦合系统;再结合可靠的自动化手段,云原生技术能够使工程师轻松地对系统作出频繁和可预测的重大变更。由此可见,云原生是保障系统能力灵动性地有效抓手;云原生技术有利于各组织在公有云、私有云和混合云等新型动态环境中,构建和运行可弹性扩展的应用。微服务架构非常适合云原生应用程序;但是,云原生同样存在着一定的限制,如果你的云原生应用程序部署在 AWS 等公有云上,则云原生 API 不是跨云平台的。
alt

云原生应用的关键属性包括了:使用轻量级的容器打包、使用最合适的语言和框架开发、以松耦合的微服务方式设计、以 API 为中心的交互和协作、无状态和有状态服务在架构上界限清晰、不依赖于底层操作系统和服务器、部署在自服务、弹性的云基础设施上、通过敏捷的 DevOps 流程管理、自动化能力、通过定义和策略驱动的资源分配。云原生是分布式应用当下重要的发展路径,其终态应当是 Distributionless,所有与分布式相关的问题由云平台解,分布式应用的开发会跟传统应用的开发一样方便,甚至更加便捷。

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/884444.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

JSP(Java Server Pages)基础使用二

简单练习在jsp页面上输出出乘法口诀表 既然大家都是来看这种代码的人了&#xff0c;那么这种输出乘法口诀表的这种简单算法肯定是难不住大家了&#xff0c;所以这次主要是来说jsp的使用格式问题。 <%--Created by IntelliJ IDEA.User: ***Date: 2024/7/18Time: 11:26To ch…

线性表二——栈stack

第一题 #include<bits/stdc.h> using namespace std; stack<char> s; int n; string ced;//如何匹配 出现的右括号转换成同类型的左括号&#xff0c;方便我们直接和栈顶元素 char cheak(char c){if(c)) return (;if(c]) return [;if(c}) return {;return \0;/…

css边框修饰

一、设置线条样式 通过 border-style 属性设置&#xff0c;可选择的一些属性如下&#xff1a; dotted&#xff1a;点线 dashed&#xff1a;虚线 solid&#xff1a;实线 double&#xff1a;双实线 效果如下&#xff1a; 二、设置边框线宽度 ① 通过 border-width 整体设置…

【深度学习】深度卷积神经网络(AlexNet)

在 LeNet 提出后&#xff0c;卷积神经网络在计算机视觉和机器学习领域中很有名气&#xff0c;但并未起到主导作用。 这是因为 LeNet 在更大、更真实的数据集上训练的性能和可行性还有待研究。 事实上&#xff0c;在 20 世纪 90 年代到 2012 年之间的大部分时间里&#xff0c;…

时间技能物品竞品抢拍拍卖发布h5公众号小程序开源版开发

时间技能物品竞品抢拍拍卖发布h5公众号小程序开源版开发 利用新型营销方式&#xff0c;将闲置的物品通过拍卖&#xff0c;让价格一提再提让用户趣在其中&#xff0c;营造一种不一样的购物体验! 拍卖列表页 列表页采用多分类&#xff0c;广告轮播及流动公告和拍卖商品列表组成…

神经网络(二):卷积神经网络

文章目录 一、图像的本质1.1单通道图像&#xff1a;灰度图1.2多通道图像 二、卷积神经网络2.1基本结构2.2卷积层2.2.1卷积操作2.2.2填充padding2.2.3步幅strides2.2.4多通道图像卷积&#xff1a;单卷积核2.2.5多通道图像卷积&#xff1a;多卷积核2.2.5卷积层的参数与激活函数 2…

【qt】QQ仿真项目1

一览全局: QQ仿真项目 一.创建项目添加资源文件二.创建数据库三.自定义标题栏Qt类四.加载样式表标题栏按钮的搭配五.标题栏实现移动窗体六.标题栏按钮连接信号槽七.标题栏双击最大化和还原八.基类窗口实现标题栏按钮信号九.重写基类窗口绘图事件确保设置样式表生效十.用户登录界…

Leetcode 1235. 规划兼职工作

1.题目基本信息 1.1.题目描述 你打算利用空闲时间来做兼职工作赚些零花钱。 这里有 n 份兼职工作&#xff0c;每份工作预计从 startTime[i] 开始到 endTime[i] 结束&#xff0c;报酬为 profit[i]。 给你一份兼职工作表&#xff0c;包含开始时间 startTime&#xff0c;结束时…

第二十节:学习Redis缓存数据库实现增删改查(自学Spring boot 3.x的第五天)

这节记录下如何使用redis缓存数据库。 第一步&#xff1a; 先在服务器端安装redis&#xff0c; 下载地址&#xff1a;Releases tporadowski/redis GitHub。 第二步&#xff1a; 安装redis客户端可视化管理软件redisDesktopmanager Redis Desktop Manager - Download 第…

革命题材网络电影《突进夹金山》将于10月上线

“长征万里险&#xff0c;最忆夹金山”。这座雪山不仅见证了红军战士们的英勇与牺牲&#xff0c;也成为了中国革命历史上的一座重要里程碑。 革命题材网络电影《突进夹金山》&#xff0c;作为四川省2024年度重点影视剧项目以及纪念红军长征90周年献礼的红色作品&#xff0c;由谢…

SPI驱动学习七(SPI_Slave_Mode驱动程序框架)

目录 一、SPI_Slave_Mode驱动程序框架1. Master和Slave模式差别1.1 主设备 (Master)1.2 从设备 (Slave)1.3 示例 2. SPI传输概述2.1 数据组织方式2.2 SPI控制器数据结构 3. SPI Slave Mode数据传输过程4. 如何编写程序4.1 设备树4.2 内核相关4.3 简单的示例代码4.3.1 master和s…

DarkLabel2.4版本导入MOT17数据集

目录 背景导入效果MOT17数据集说明DarkLabel导入视频导入gt文件 背景 做目标追踪&#xff0c;目前找了一圈开源工具&#xff0c;发现DarkLabel还是很好用的&#xff0c;提供自动目标跟踪&#xff0c;标注很方便。 由于目标追踪我用的是bytetrack&#xff0c;官网是用mot17数据…

python爬虫案例——抓取链家租房信息(8)

文章目录 1、任务目标2、分析网页3、编写代码1、任务目标 目标站点:链家租房版块(https://bj.lianjia.com/zufang/) 要求:抓取该链接下前5页所有的租房信息,包括:标题、详情信息、详情链接、价格 如: 2、分析网页 用浏览器打开链接,按F12或右键检查,进入开发者模式;因…

5.MySQL表的约束

目录 表的约束空属性&#xff08;非空约束&#xff09;默认值&#xff08;default约束&#xff09;列描述&#xff08;comment&#xff09;zerofill主键&#xff08;primary key约束&#xff09;自增长&#xff08;auto_increment&#xff09;唯一键&#xff08;unique约束&…

数据集-目标检测系列-鲨鱼检测数据集 shark >> DataBall

数据集-目标检测系列-鲨鱼检测数据集 shark >> DataBall 数据集-目标检测系列-鲨鱼检测数据集 shark 数据量&#xff1a;6k 数据样例项目地址&#xff1a; gitcode: https://gitcode.com/DataBall/DataBall-detections-100s/overview github: https://github.com/Te…

开启争对目标检测的100类数据集-信息收集

DataBall 助力快速掌握数据集的信息和使用方式。 目标检测项目数据集样例地址&#xff1a; gitcode: https://gitcode.com/DataBall/DataBall-detections-100s/overview github: https://github.com/TechLinkX/DataBall-detections-100s 请关注我们的专栏&#xff1a;DataBal…

Excel 绝对值怎么求?ABS 函数用法详解

大家好&#xff0c;这里是效率办公指南&#xff01; &#x1f4ca; ABS函数在Excel中用于计算数值的绝对值&#xff0c;这在处理财务、科学和日常办公等领域的数据时非常有用。今天&#xff0c;我们将通过一些具体的日常工作案例&#xff0c;来展示ABS函数的实际应用。 ABS函…

《深度学习》自然语言处理 统计、神经语言模型 结构、推导解析

目录 一、语言转换方法 1、如何将语言转换为模型可以直接识别的内容 1&#xff09;数据预处理 2&#xff09;特征提取 3&#xff09;模型输入 4&#xff09;模型推理 二、语言模型 1、统计语言模型 1&#xff09; 案例&#xff1a; • 运行结果&#xff1a; • 稀疏…

BAAI 团队发布多模态模型 Emu3

在人工智能的浩瀚海洋中&#xff0c;一艘名为Emu3的创新之船正在破浪前行&#xff0c;为我们展示了多模态AI的无限可能。这个由Meta AI研究团队开发的革命性模型&#xff0c;通过简单而巧妙的"下一步预测"机制&#xff0c;实现了文本、图像和视频的统一处理。 Emu3的…

linux服务器部署filebeat

# 下载filebeat curl -L -O https://artifacts.elastic.co/downloads/beats/filebeat/filebeat-7.17.23-linux-x86_64.tar.gz # 解压 tar xzvf filebeat-7.17.23-linux-x86_64.tar.gz# 所在位置&#xff08;自定义&#xff09; /opt/filebeat-7.17.23-linux-x86_64/filebeat.ym…