常见统计量与其抽样分布

什么是统计量

我们首先给出统计量的定义:设 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn 为来自于总体X的一个样本, g ( X 1 , X 2 , ⋯   , X n ) g(X_1,X_2,\cdots,X_n) g(X1,X2,,Xn) 为关于 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn的函数,如果g中不含未知参数,则其被称为是一个统计量。
用大白话来说就是用都是已知的数据做计算就是一个统计量,把数据相加,相减,求平均,求次方等等结果全部都是一个统计量。

而有些统计量在生活中更具有实际意义和使用价值,大家使用的也比较多,所以有如下常用的统计量:
样本均值:
X ˉ = 1 n ∑ i = 1 n X i \bar X = \frac1n \sum\limits_{i=1}^{n} X_i Xˉ=n1i=1nXi
样本方差:
S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 = 1 n − 1 ( ∑ i = 1 n X i 2 − n X ˉ 2 ) S^2 = \frac1{n-1}\sum\limits^{n}_{i=1}(X_i-\bar X)^2=\frac1{n-1}(\sum\limits_{i=1}^{n} X_i^2 - n \bar X^2) S2=n11i=1n(XiXˉ)2=n11(i=1nXi2nXˉ2)
样本标准差:
S = 1 n − 1 ( ∑ i = 1 n X i 2 − n X ˉ 2 ) S=\sqrt{\frac1{n-1}(\sum\limits_{i=1}^{n} X_i^2 - n \bar X^2)} S=n11(i=1nXi2nXˉ2)
k阶原点矩
A k = 1 n ∑ i = 1 n X i k , k = 1 , 2 , ⋯   ; A_k=\frac1n \sum\limits_{i=1}^{n}X_i^{k},k=1,2,\cdots; Ak=n1i=1nXik,k=1,2,;
k阶中心矩
B k = 1 n ∑ i = 1 n ( X i − X ˉ ) k , k = 2 , 3 , ⋯   ; B_k=\frac1n\sum\limits_{i=1}^{n}(X_i - \bar X)^k,k=2,3,\cdots; Bk=n1i=1n(XiXˉ)k,k=2,3,;
需要注意的就是样本方差的分母是n-1,主要是考虑到无偏性,具体的推导可以参考:https://blog.csdn.net/qq_42692386/article/details/137955127

抽样分布

什么是抽样分布

首先来辨别一下统计中常说的几个词:总体分布,样本分布,抽样分布。

总体分布是总体中各元素的观察值所形成的相对频数分布,例如之前说过的二项分布,整个总体中的元素都是只有0和1两个取值,根据总体分布可以得到总体均值 μ \mu μ和总体方差 σ 2 {\sigma }^{2} σ2等。
样本分布是从总体中抽出一个容量为n的样本,由这n个观察值形成的相对频数分布,称为样本分布。用来描述样本分布的样本统计量有样本均值 X ˉ \bar X Xˉ和样本方差 S 2 S^2 S2

抽样分布:抽样分布是指样本统计量的概率分布。对于抽样分布的理解最核心的点是:样本统计量是被当成了一个随机变量来看待的,它是统计量的概率分布
以样本均值为例,在之前说到的样本分布中是一个具体的值,是在总体中抽到的个数为n的一个样本加总平均计算得到的一个固定的值,但是这个值是只抽取一组样本计算的一个样本均值结果,在整个总体中还可以抽出其他更多的个数为n的样本,每抽取一组样本都可以计算出一个样本均数,而且这些样本均数或多或少都会有些差异。

我们不妨用身高的这个例子还原一下这个过程。假设我们现在想了解中国成年男子的身高情况,通过简单随机抽样获取了一个1000人的样本,计算出样本均值为1.76(米),样本标准差为0.1(米)。现在,我们按照同样的方法重复抽100次,每次都抽取1000人。在这个过程中我们实际一共调查了10万人,不过这10万人以1000人为一组被分成了100个样本,而每一组都可以计算一个样本均值,假设分别为:1.76,1.72,1.69,1.77,……,1.75,这就是一个关于身高的样本均值的抽样分布。由此,我们一共获得了100个样本均值,从而可以对这100个数求平均数和标准差。

在统计后面的学习中,我们经常会看到样本均值有 E ( X ˉ ) = μ , D ( X ˉ ) = σ 2 n E(\bar X)=\mu,D(\bar X)=\frac{\sigma^2}{n} E(Xˉ)=μ,D(Xˉ)=nσ2这样的公式,也就是样本均值的期望等于总体期望,样本均值的方差是总体方差的 1 n \frac{1}{n} n1,这里的式子中的 X ˉ \bar X Xˉ就是一个随机变量,如果理解为一个样本下的均值理解为一个常数值的话,那么你就会疑惑为什么一个常数值得方差不是0而是 σ 2 n \frac{\sigma^2}{n} nσ2

三大抽样分布

在正态总体的条件下有如下三个常用统计量的分布

卡方分布( χ 2 \chi^2 χ2

X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn为来自总体 N ( 0 , 1 ) N(0,1) N(0,1)的样本,则称统计量 χ 2 = X 1 2 + X 2 2 + ⋯ + X n 2 \chi^2=X_1^2+X_2^2+\cdots+X_n^2 χ2=X12+X22++Xn2服从自由度为n的卡方分布,记为 χ 2 ∼ χ 2 ( n ) \chi ^2 \sim \chi^2(n) χ2χ2(n)
卡方分布的概率密度函数和图像如下:
f ( y ) = 1 2 n / 2 Γ ( n / 2 ) y n / 2 − 1 e − y / 2 , y > 0 f(y) = \frac{1}{2^{n/2}\Gamma(n/2)} y^{n/2 - 1} e^{-y/2},y>0 f(y)=2n/2Γ(n/2)1yn/21ey/2y>0
其中 Γ ( n / 2 ) \Gamma(n/2) Γ(n/2)是伽马函数。(一般教材中会有这些内容,但好像有的专业不做要求,只要知道相关性质就可以了,关于伽马函数可自行百度)
在这里插入图片描述
卡方分布有如下性质:
1.可加性:设 χ 1 2 ∼ χ 2 ( n 1 ) , χ 2 2 ∼ χ 2 ( n 2 ) \chi _1^2 \sim \chi ^2(n_1),\chi_2^2 \sim \chi^2(n_2) χ12χ2(n1),χ22χ2(n2) χ 1 2 , χ 2 2 \chi_1^2,\chi_2^2 χ12,χ22相互独立,那么有 χ 1 2 + χ 2 2 ∼ χ 2 ( n 1 + n 2 ) \chi_1^2+\chi_2^2 \sim \chi^2(n_1+n_2) χ12+χ22χ2(n1+n2)
2.期望和方差:假设 χ 2 ∼ χ 2 ( n ) \chi ^2 \sim \chi^2(n) χ2χ2(n),则有 E ( χ 2 ) = n , D ( χ 2 ) = 2 n E(\chi^2)=n,D(\chi^2)=2n E(χ2)=n,D(χ2)=2n
3.上 α \alpha α分位点:对于给定的正数 α , 0 < α < 1 \alpha,0<\alpha<1 α,0<α<1,称满足条件 P { χ 2 > χ α 2 ( n ) } = ∫ χ α 2 ( n ) ∞ f ( y ) d y = α P\{\chi^2 > \chi^2_\alpha(n)\}=\int_{ \chi^2_\alpha(n)}^{\infty}f(y)\mathrm{d}y=\alpha P{χ2>χα2(n)}=χα2(n)f(y)dy=α的点 χ α 2 ( n ) \chi^2_\alpha(n) χα2(n)为分布的上 α \alpha α分位点
在这里插入图片描述

t分布

X ∼ N ( 0 , 1 ) , Y ∼ χ 2 ( n ) X \sim N(0,1),Y \sim \chi^2(n) XN(0,1),Yχ2(n),且 X , Y X,Y X,Y相互独立,那么我们称随机变量 t = X Y / n t=\frac{X}{\sqrt{Y/n}} t=Y/n X服从自由度为 n n n t t t分布,也称为学生分布。
t分布的概率密度函数和图像如下:
在这里插入图片描述
卡方分布有如下性质:
对称性: t 1 − α ( n ) = − t α ( n ) t_{1-\alpha}(n)=-t_{\alpha}(n) t1α(n)=tα(n),类似于正态分布
期望与方差: E ( t α ( n ) ) = 0 , D ( t α ( n ) ) = n n − 2 E(t_\alpha(n))=0,D(t_\alpha(n))=\frac{n}{n-2} E(tα(n))=0,D(tα(n))=n2n
大样本情况下近似于正态分布: n > 45 , t α ( n ) ≈ z α n>45,t_\alpha(n)\approx z_\alpha n>45tα(n)zα

F分布

U ∼ χ 2 ( n 1 ) , V ∼ χ 2 ( n 2 ) U \sim \chi^2(n_1),V \sim \chi^2(n_2) Uχ2(n1),Vχ2(n2),且 U , V U,V U,V相互独立,则称随机变量 F = U / n 1 V / n 2 F=\frac{U/n_1}{V/n_2} F=V/n2U/n1服从自由度为 ( n 1 , n 2 ) (n_1,n_2) (n1,n2) F F F分布,记为 F ∼ F ( n 1 , n 2 ) F \sim F(n_1,n_2) FF(n1,n2)
F分布的概率密度函数图像如下:
在这里插入图片描述
F分布的性质如下:
如有 F ∼ F ( n 1 , n 2 ) , 则 1 F ∼ F ( n 2 , n 1 ) 如有F \sim F(n_1,n_2), 则\frac1{F} \sim F(n_2,n_1) 如有FF(n1,n2),F1F(n2,n1)
F 1 − α ( n 1 , n 2 ) = 1 F α ( n 2 , n 1 ) F_{1-\alpha}(n_1,n_2)=\frac{1}{F_{\alpha}(n_2,n_1)} F1α(n1,n2)=Fα(n2,n1)1

正态总体的样本均值与样本方差的分布

之前我们说过抽样分布就是对统计量的概率分布的描述,我们知道日常生活中的大样本基本服从正态分布,而我们一般无法统计总体只能进行抽样并只能得到样本均值和样本方差,所以研究正态总体的样本均值与样本方差的分布就有相当重要的意义。在之后我们会说到区间估计与假设检验就是这方面的实际应用和扩展。

设总体 X X X(不管服从什么分布,只要方差和均值存在)的均值为 μ \mu μ,方差为 σ 2 \sigma^2 σ2, X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn为来自总体 X X X的一个样本,样本均值为 X ˉ \bar X Xˉ,样本方差为 S 2 S^2 S2,则有:
E ( X ˉ ) = μ , D ( X ˉ ) = σ 2 n , E ( S 2 ) = σ 2 E(\bar X)=\mu,D(\bar X)=\frac{\sigma^2}{n},E(S^2)=\sigma^2 E(Xˉ)=μ,D(Xˉ)=nσ2E(S2)=σ2

进而设 X ∼ N ( μ , σ 2 ) X \sim N(\mu,\sigma^2) XN(μ,σ2),即在正态总体下,设 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn为来自正态总体总体 X ∼ N ( μ , σ 2 ) X \sim N(\mu,\sigma^2) XN(μ,σ2)的一个样本,样本均值为 X ˉ \bar X Xˉ,样本方差为 S 2 S^2 S2,则 X ˉ \bar X Xˉ S 2 S^2 S2相互独立,且有如下结论:
结论1:
X ˉ ∼ N ( μ , σ 2 n ) \bar{X} \sim N(\mu, \dfrac{\sigma^2}{n}) XˉN(μ,nσ2)
证明:根据正态分布的可加性,设 X 1 , X 2 , ⋯   , X n ∼ N ( μ , σ 2 ) X_1,X_2,\cdots,X_n\sim N(\mu,\sigma^2) X1,X2,,XnN(μ,σ2),可得
X 1 + X 2 + ⋯ + X n ∼ N ( n μ , n σ 2 ) X_1+X_2+\cdots+X_n\sim N(n\mu,n\sigma^2) X1+X2++XnN(nμ,nσ2)
X ˉ = X 1 + X 2 + ⋯ + X n n ∼ N ( μ , σ 2 n ) \bar{X}=\dfrac{X_1+X_2+\cdots+X_n}{n}\sim N\left(\mu,\dfrac{\sigma^2}{n}\right) Xˉ=nX1+X2++XnN(μ,nσ2)

转化为标准型有:
X ˉ − μ σ / n ∼ N ( 0 , 1 ) \begin{align} \frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim N(0,1) \end{align} σ/n XˉμN(0,1)

结论2:
1 σ 2 ∑ i = 1 n ( X i − μ ) 2 = ∑ i = 1 n ( X i − μ σ ) 2 ∼ χ 2 ( n ) \dfrac{1}{\sigma^2} \sum\limits^{n}_{i=1}\left(X_i-\mu \right)^2= \sum\limits^{n}_{i=1}\left(\frac{X_i-\mu}{\sigma}\right)^2 \sim \chi^2(n) σ21i=1n(Xiμ)2=i=1n(σXiμ)2χ2(n)

结论3:
( n − 1 ) S 2 σ 2 = ∑ i = 1 n ( X i − X ˉ σ ) 2 ∼ χ 2 ( n − 1 ) \dfrac{(n-1)S^2}{\sigma^2}= \sum\limits^{n}_{i=1}\left(\frac{X_i-\bar X}{\sigma}\right)^2 \sim \chi^2(n-1) σ2(n1)S2=i=1n(σXiXˉ)2χ2(n1)

结论4:
n ⋅ ( X ˉ − μ ) S ∼ t ( n − 1 ) \dfrac{\sqrt{n}\cdot(\bar{X}-\mu)}{S}\sim t(n-1) Sn (Xˉμ)t(n1)

结论5:
n ⋅ ( X ˉ − μ ) 2 S 2 ∼ F ( 1 , n − 1 ) \dfrac{n\cdot(\bar{X}-\mu)^2}{S^2}\sim F(1,n-1) S2n(Xˉμ)2F(1,n1)
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/882857.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python | Leetcode Python题解之第434题字符串中的单词数

题目&#xff1a; 题解&#xff1a; class Solution:def countSegments(self, s):segment_count 0for i in range(len(s)):if (i 0 or s[i - 1] ) and s[i] ! :segment_count 1return segment_count

【JS】严格模式/非严格模式的区别

JS的严格模式和非严格模式 js运行有两种模式&#xff1a;一种是普通模式&#xff1b;一种是严格模式。 严格模式是ES5添加的&#xff0c;是比普通模式多一部分的js规则。如果在ES5之前js解析引擎&#xff0c;会忽略严格模式。 js一般默认是普通模式&#xff0c;ES6的模块和Cla…

数据结构 ——— 数组 nums 包含了从 0 到 n 的所有整数,但是其中缺失了一个,请编写代码找出缺失的整数,并且在O(N)时间内完成

目录 题目要求 代码实现 方法1&#xff08;异或法&#xff09;&#xff1a; 异或算法的时间复杂度&#xff1a; 方法2&#xff08;等差数列公式&#xff09;&#xff1a; 等差数列公式的时间复杂度&#xff1a; 题目要求 整型数组 nums 包含了从 0 到 n 的所有整数&…

VPN概述

目录 定义&#xff1a; VPN的分类 VPN的主要应用场景 GRE VPN概念 GRE VPN的优缺点 GRE VPN应用场景和配置 GRE VPN配置流程 Router A&#xff1a; Router B&#xff1a; 定义&#xff1a; 虚拟专用网络(VPN)是一种通过公用网络线路建立私有网络&#xff0c;用于传输私…

UE学习篇ContentExample解读------Blueprint_Communication-上

文章目录 总览描述批次阅览1.1 Basic communication with a target blueprint1.2 Basic communication via actor casting1.3 Blueprint communication via actor casting to child Blueprint1.4 Communicating with all actors of a specific class 概念总结致谢&#xff1a; …

VulnHub-Narak靶机笔记

Narak靶机笔记 概述 Narak是一台Vulnhub的靶机&#xff0c;其中有简单的tftp和webdav的利用&#xff0c;以及motd文件的一些知识 靶机地址&#xff1a; https://pan.baidu.com/s/1PbPrGJQHxsvGYrAN1k1New?pwda7kv 提取码: a7kv 当然你也可以去Vulnhub官网下载 一、nmap扫…

【专题】2024年中国白酒行业数字化转型研究报告合集PDF分享(附原数据表)

原文链接&#xff1a;https://tecdat.cn/?p37755 消费人群趋于年轻化&#xff0c;消费需求迈向健康化&#xff0c;消费场景与渠道走向多元化&#xff0c;这些因素共同驱动企业凭借数据能力来适应市场的变化。从消费市场来看&#xff0c;消费群体、需求、场景及渠道皆展现出与…

PhpStudy | PHP 版本切换流程

关注这个软件的其他相关笔记&#xff1a;PhpStudy —— README-CSDN博客 在使用多样化的 PHP Web 应用程序时&#xff0c;选择合适的 PHP 版本至关重要。例如&#xff0c;一些老旧的应用程序可能是基于早期版本的 PHP 开发的&#xff0c;如果使用最新版本的 PHP 来运行&#xf…

【YOLO学习】YOLOv1详解

文章目录 1. 概述2. 算法流程3. 网络结构4. 损失函数 1. 概述 1. YOLO 的全称是 You Only Look Once: Unified, Real-Time Object Detection。YOLOv1 的核心思想就是利用整张图作为网络的输入&#xff0c;直接在输出层回归 bounding box 的位置和 bounding box 所属的类别。简单…

执行网络攻击模拟的 7 个步骤

在进攻和防守策略方面&#xff0c;我们可以从足球队和美式足球队身上学到很多东西。球员们会分析对方球队的策略&#xff0c;找出弱点&#xff0c;相应地调整进攻策略&#xff0c;最重要的是&#xff0c;练习、练习、再练习。作为最低要求&#xff0c;网络安全部门也应该这样做…

论文笔记(四十六)RobotGPT: Robot Manipulation Learning From ChatGPT

xx RobotGPT: Robot Manipulation Learning From ChatGPT 文章概括摘要I. 介绍II. 相关工作III. 方法论A. ChatGPT 提示机器人操作B. 机器人学习 IV. 实验A. 衡量标准B. 实验设置C. 模拟实验D. 真实机器人实验E. AB测试 V. 结论 文章概括 引用&#xff1a; article{jin2024r…

gateway--网关

在微服务架构中&#xff0c;Gateway&#xff08;网关&#xff09;是一个至关重要的组件&#xff0c;它扮演着多种关键角色&#xff0c;包括路由、负载均衡、安全控制、监控和日志记录等。 Gateway网关的作用 统一访问入口&#xff1a; Gateway作为微服务的统一入口&#xff0c…

Qt窗口——QMenuBar

文章目录 QMenuBar示例演示给菜单栏设置快捷键给菜单项设置快捷键添加子菜单添加分割线添加图标 QMenuBar Qt中采用QMenuBar来创建菜单栏&#xff0c;一个主窗口&#xff0c;只允许有一个菜单栏&#xff0c;位于主窗口的顶部、主窗口标题栏下面&#xff1b;一个菜单栏里面有多…

【Linux实践】实验三:LINUX系统的文件操作命令

【Linux实践】实验三&#xff1a;LINUX系统的文件操作命令 实验目的实验内容实验步骤及结果1. 切换和查看目录2. 显示目录下的文件3. 创建和删除目录① mkdir② rm③ rmdir 4. 输出和重定向① 输出② 重定向 > 和 >> 5. 查看文件内容① cat② head 6. 权限7. 复制8. 排…

科大讯飞智能体Python SDK接入流程

第一步&#xff1a;注册账号​ 进入https://passport.xfyun.cn/login&#xff0c;根据提示注册或登陆账号。 ​ 第二步&#xff1a;创建智能体 进入这个网页创建智能体&#xff0c;填好信息&#xff1a; https://xinghuo.xfyun.cn/botcenter/createbot?createtrue&qu…

【GeekBand】C++设计模式笔记4_Strategy_策略模式

1. “组件协作”模式 现代软件专业分工之后的第一个结果是“框架与应用程序的划分”&#xff0c;“组件协作”模式通过晚期绑定&#xff0c;来实现框架与应用程序之间的松耦合&#xff0c;是二者之间协作时常用的模式。典型模式 Template MethodStrategyObserver / Event 2.…

Webpack 介绍

Webpack 介绍 Date: August 29, 2024 全文概要 Webpack概念&#xff1a; Webpack是一个静态的模块化的打包工具&#xff0c;可以为现代的 JavaSript 应用程序进行打包。 1-静态&#xff1a;Webpack可以将代码打包成最终的静态资源 2-模块化&#xff1a;webpack支持各种模块…

408选择题笔记|自用|随笔记录

文章目录 B树&#xff1a;访问节点建堆&#xff01;将结点插入空堆广义指令求每个子网可容纳的主机数量虚拟内存的实现方式文件目录项FCB和文件安全性管理级别索引文件三种存取方式及适用器件成组分解访问磁盘次数 C语言标识符 最小帧长物理传输层介质 局域网&广域网考点总…

云计算课程作业1

作业1 Xmanager连接 rhel连接 作业2 首先确认你的虚拟机设置的是NAT 1-3 然后打开这篇blog&#xff0c;并完成第一步和第二步 因为我们是NAT&#xff0c;所以不需要连接网桥&#xff0c;即跳过第三步&#xff0c;但是这里ping一下测试网络连接 2- 如果到这里你发现提示yum…

echarts 导出pdf空白原因

问题阐述 页面样式&#xff1a; 导出pdf: 导出pdf&#xff0c;统计图部分为空白。 问题原因 由于代码中进行了dom字符串的复制&#xff0c;而echarts用canvas绘制&#xff0c;canvas内部内容不会进行复制&#xff0c;只会复制canvas节点&#xff0c;因此导出pdf空白。 解决…