手势手语识别数据集,YOLOv5目标检测两个数据集,图大量,模型精度高分别为近100类

手势手语识别数据集,YOLOv5目标检测


两个数据集,图大量,模型精度高分别为近100类

手势手语识别数据集(Sign Language Gesture Recognition Dataset)

数据集概述

该数据集专为手势手语识别设计,包含大量的图像样本,涵盖了80种不同的手势类别。这些手势包括日常生活中常见的动作和表达,如食物、饮料、问候、支付方式等。数据集采用YOLOv5格式进行标注,适用于基于YOLOv5的目标检测任务。该数据集已经划分好训练集、验证集和测试集,并且应用了多种数据增强技术,以提高模型的泛化能力。

数据集特点
  • 大量图像:数据集中包含数千张高分辨率的手势图像,确保模型能够学习到丰富的特征。
  • 多样化手势:涵盖80种不同的手势类别,包括但不限于食物、饮料、问候、支付方式等。
  • 详细标注:每张图像都附有精确的边界框以及类别标签,便于训练目标检测模型。
  • 标准化格式:图像采用JPG格式存储,标签则按照YOLOv5格式组织,方便与主流框架结合使用。
  • 数据增强:数据集已应用多种数据增强策略,如旋转、翻转、亮度调整等,以增加样本多样性。
  • 高精度模型:提供了预训练的YOLOv5模型,具有较高的识别精度。
数据集构成
  • 图像数量:数千张高分辨率图像
  • 图像格式:JPG
  • 标签数量:对应每张图像各有一个YOLOv5格式的文本文件
  • 类别数:80类
  • 类别名称
    • additional, alcohol, allergy, bacon, bag, barbecue, bill, biscuit, bitter, bread, burger, bye, cake, cash, cheese,
    • chicken, coke, cold, cost, coupon, credit card, cup, dessert, drink, drive, eat, eggs, enjoy, fork, french fries, fresh,
    • hello, hot, icecream, ingredients, juicy, ketchup, lactose, lettuce, lid, manager, menu, milk, mustard, napkin, no, order,
    • pepper, pickle, pizza, please, ready, receipt, refill, repeat, 等
  • 数据集划分
    • 训练集
    • 验证集
    • 测试集
  • 数据增强:应用了多种数据增强技术
数据集用途
  • 手势识别:用于开发高效准确的手势识别算法,识别并分类各种手势。
  • 手语翻译:结合手语翻译系统,帮助聋哑人与他人进行沟通。
  • 交互界面:用于开发基于手势的用户交互界面,如智能家居控制、虚拟现实等。
  • 性能评估:作为基准数据集,可以用来比较不同算法或模型之间的性能差异。
  • 研究与开发:支持学术界和工业界的研究人员探索新的计算机视觉技术和方法。
  • 教育与培训:适合作为教材内容,帮助学生理解实际应用场景下的机器学习问题解决流程。
  • 预训练:可以用作预训练数据集,帮助用户在自己的特定数据集上快速启动训练过程。
示例代码

以下是一个简单的Python脚本示例,用于加载数据集中的一对图像-标签对,并可视化其中的标注信息:

import os
import cv2
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle

# 数据集目录路径
data_dir = 'path/to/sign_language_gesture_dataset'
train_image_dir = os.path.join(data_dir, 'images/train')
train_label_dir = os.path.join(data_dir, 'labels/train')

# 选取一张训练图像及其对应标签
image_files = os.listdir(train_image_dir)
image_file = image_files[0]  # 假设取第一张图
label_file = os.path.splitext(image_file)[0] + '.txt'

image_path = os.path.join(train_image_dir, image_file)
label_path = os.path.join(train_label_dir, label_file)

# 加载图像
image = cv2.imread(image_path, cv2.IMREAD_COLOR)
height, width, _ = image.shape

# 解析YOLOv5格式标签
with open(label_path, 'r') as f:
    lines = f.readlines()
    bboxes = []
    for line in lines:
        class_id, x_center, y_center, box_width, box_height = map(float, line.strip().split())
        x_min = int((x_center - box_width / 2) * width)
        y_min = int((y_center - box_height / 2) * height)
        box_width = int(box_width * width)
        box_height = int(box_height * height)
        bboxes.append((class_id, x_min, y_min, box_width, box_height))

# 可视化标注
fig, ax = plt.subplots(figsize=(10, 10))
ax.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
colors = ['red', 'green', 'blue', 'yellow', 'cyan', 'magenta']  # 分别代表不同颜色
names = [
    'additional', 'alcohol', 'allergy', 'bacon', 'bag', 'barbecue', 'bill', 'biscuit', 'bitter', 'bread', 'burger', 'bye',
    'cake', 'cash', 'cheese', 'chicken', 'coke', 'cold', 'cost', 'coupon', 'credit card', 'cup', 'dessert', 'drink',
    'drive', 'eat', 'eggs', 'enjoy', 'fork', 'french fries', 'fresh', 'hello', 'hot', 'icecream', 'ingredients', 'juicy',
    'ketchup', 'lactose', 'lettuce', 'lid', 'manager', 'menu', 'milk', 'mustard', 'napkin', 'no', 'order', 'pepper',
    'pickle', 'pizza', 'please', 'ready', 'receipt', 'refill', 'repeat'
]

for bbox in bboxes:
    class_id, x, y, w, h = bbox
    rect = Rectangle((x, y), w, h, linewidth=2, edgecolor=colors[int(class_id) % len(colors)], facecolor='none')
    ax.add_patch(rect)
    ax.text(x, y - 10, names[int(class_id)], color=colors[int(class_id) % len(colors)], fontsize=8)

plt.title('Gesture Detection')
plt.axis('off')
plt.show()
数据集结构示例
├── sign_language_gesture_dataset
│   ├── images
│   │   ├── train
│   │   │   ├── 00000.jpg
│   │   │   ├── 00001.jpg
│   │   │   └── ...
│   │   ├── validation
│   │   │   ├── 00000.jpg
│   │   │   ├── 00001.jpg
│   │   │   └── ...
│   │   └── test
│   │       ├── 00000.jpg
│   │       ├── 00001.jpg
│   │       └── ...
│   ├── labels
│   │   ├── train
│   │   │   ├── 00000.txt
│   │   │   ├── 00001.txt
│   │   │   └── ...
│   │   ├── validation
│   │   │   ├── 00000.txt
│   │   │   ├── 00001.txt
│   │   │   └── ...
│   │   └── test
│   │       ├── 00000.txt
│   │       ├── 00001.txt
│   │       └── ...
│   └── data.yaml  # 包含数据集的基本信息如类别数及类别名
数据集使用指南

  1. 数据准备:确认数据集路径是否正确,并且图像和标签文件均存在指定的目录下。
  2. 数据划分:数据集已经划分为训练集、验证集和测试集,可以直接使用。
  3. 配置文件:根据所使用的深度学习框架创建相应的配置文件,比如YOLOv5需要一个data.yaml文件来描述数据集路径和类别信息。
  4. 模型训练:利用选定的深度学习框架开始训练目标检测模型。注意要合理设置超参数以优化训练效果。
  5. 结果分析:完成训练后,对模型预测结果进行详细分析,必要时调整模型架构或训练策略以进一步提高准确性。
总结

这个专门为手势手语识别设计的数据集不仅包含了丰富的手势类别,还通过数据增强技术增强了其多样性和实用性。无论是对于希望改善现有系统还是尝试新方法的研究者来说,它都是一个宝贵的资源。此外,由于其标准化的格式和支持主流框架的特点,使得用户能够轻松地将其集成到自己的项目中去。该数据集特别适合于手势识别、手语翻译和其他相关领域的研究和应用。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/882446.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

[深度学习]Pytorch框架

1 深度学习简介 应用领域:语音交互、文本处理、计算机视觉、深度学习、人机交互、知识图谱、分析处理、问题求解2 发展历史 1956年人工智能元年2016年国内开始关注深度学习2017年出现Transformer框架2018年Bert和GPT出现2022年,chatGPT出现,进入AIGC发展阶段3 PyTorch框架简…

Vue3(二)计算属性Computed,监视属性watch,watchEffect,标签的ref属性,propos属性,生命周期,自定义hook

文章目录 一 、计算属性1. 简写2. 完整写法 二、监视watch1. 监视【ref】定义的【基本类型】数据2. 监视【ref】定义的【对象类型】数据3. 监视【reactive】定义的【对象类型】数据4. 监视【ref】或【reactive】定义的【对象类型】数据中的某个属性5. 监视多个数据总结 三、wat…

html+css(如何用css做出京东页面,静态版)

<!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>京东</title><link rel"stylesheet&q…

基于Es和智普AI实现的语义检索

1、什么是语义检索 语义检索是一种利用自然语言处理&#xff08;NLP&#xff09;和人工智能&#xff08;AI&#xff09;技术来理解搜索查询的语义&#xff0c;以提供更准确和相关搜索结果的搜索技术&#xff0c;语义检索是一项突破性的技术&#xff0c;旨在通过深入理解单词和…

知识库管理系统的未来趋势:从单一平台到生态系统

在数字化浪潮的推动下&#xff0c;知识库管理系统&#xff08;Knowledge Base Management System, KBMS&#xff09;正逐步从传统的单一平台向更加开放、灵活、智能的生态系统转变。这一转变不仅体现了技术进步的必然结果&#xff0c;也深刻反映了市场需求的变化。本文将分析随…

neo4j节点关联路径的表示、节点的增删改查

目录 核心概念节点的增删改查&#xff08;1&#xff09;增&#xff08;2&#xff09;查&#xff08;3&#xff09;删&#xff08;4&#xff09;改 neo4j文档&#xff1a;https://neo4j.com/docs/ https://neo4j.com/docs/cypher-manual/current/introduction/ 核心概念 节点 ne…

如何将Excel表格嵌入Web网页在线预览、编辑并保存到自己服务器上?

猿大师办公助手作为一款专业级的网页编辑Office方案&#xff0c;不仅可以把微软Office、金山WPS和永中Office的Word文档内嵌到浏览器网页中实现在线预览、编辑保存等操作&#xff0c;还可以把微软Office、金山WPS和永中Office的Excel表格实现网页中在线预览、编辑并保存到服务器…

C++的哲学思想

C的哲学思想 文章目录 C的哲学思想&#x1f4a1;前言&#x1f4a1;C的哲学思想☁️C底层不应该基于任何其他语言&#xff08;汇编语言除外&#xff09;☁️只为使用的东西付费&#xff08;不需要为没有使用到的语言特性付费&#xff09;☁️以低成本提供高级抽象&#xff08;更…

在云渲染中3D工程文件安全性怎么样?

在云渲染中&#xff0c;3D工程文件的安全性是用户最关心的问题之一。随着企业对数据保护意识的增强&#xff0c;云渲染平台采取了严格的安全措施和加密技术&#xff0c;以确保用户数据的安全性和隐私性。 云渲染平台为了保障用户数据的安全&#xff0c;采取了多层次的安全措施。…

【VUE3.0】动手做一套像素风的前端UI组件库---Button

目录 引言做之前先仔细看看UI设计稿解读一下都有哪些元素&#xff1a;素材补充 代码编写1. 按钮四周边框2. 默认状态下按钮颜色立体效果3. 鼠标移入聚焦4. 模拟鼠标点击效果 组件封装1. 按类型设置颜色2. 设置按钮禁用状态3. 处理一个bug4. 看下整体组件效果5. 组件完整代码6. …

vue.js 展示一个树形结构的数据视图,并禁用其中默认选中的节点

功能描述 展示树形结构&#xff1a; 使用 Element UI 的 <el-tree> 组件展示树形结构数据。数据由 content 数组提供&#xff0c;树形结构包含了嵌套的节点及其子节点。 默认选中节点&#xff1a; 使用 defaultCheckedKeys 属性指定默认选中的节点。这些节点在树形结构渲…

求职Leetcode题目(11)

1.最长连续序列 解题思路: 方法一&#xff1a; • 首先对数组进行排序&#xff0c;这样我们可以直接比较相邻的元素是否连续。• 使用一个变量 cur_cnt 来记录当前的连续序列长度。• 遍历排序后的数组&#xff1a; 如果当前元素与前一个元素相等&#xff0c;则跳过&#xf…

Debian安装mysql遇到的问题解决及yum源配置

文章目录 一、安装mysql遇到的问题解决二、Debain系统mysql8.0的安装以及远程连接三、彻底卸载软件四、Python 操作 mysql五、debian软件源source.list文件格式说明1. 第一部分2. 第二部分3. 第三部分4. 第四部分5. 关于源的混用问题6. 按需修改自己的sources.list7. 更新软件包…

python爬虫案例——腾讯网新闻标题(异步加载网站数据抓取,post请求)(6)

文章目录 前言1、任务目标2、抓取流程2.1 分析网页2.2 编写代码2.3 思路分析前言 本篇案例主要讲解异步加载网站如何分析网页接口,以及如何观察post请求URL的参数,网站数据并不难抓取,主要是将要抓取的数据接口分析清楚,才能根据需求编写想要的代码。 1、任务目标 目标网…

LabVIEW提高开发效率技巧----使用LabVIEW工具

LabVIEW为开发者提供了多种工具和功能&#xff0c;不仅提高工作效率&#xff0c;还能确保项目的质量和可维护性。以下详细介绍几种关键工具&#xff0c;并结合实际案例说明它们的应用。 1. VI Analyzer&#xff1a;自动检查代码质量 VI Analyzer 是LabVIEW提供的一款强大的工…

Java — LeetCode 面试经典150题(一)

双指针 125.验证回文串 题目 如果在将所有大写字符转换为小写字符、并移除所有非字母数字字符之后&#xff0c;短语正着读和反着读都一样。则可以认为该短语是一个 回文串 。 字母和数字都属于字母数字字符。 给你一个字符串 s&#xff0c;如果它是 回文串 &#xff0c;返回…

验收测试:从需求到交付的全程把控!

在软件开发过程中&#xff0c;验收测试是一个至关重要的环节。它不仅是对软件质量的把关&#xff0c;也是对整个项目周期的全程把控。从需求分析到最终的软件交付&#xff0c;验收测试都需要严格进行&#xff0c;以确保软件能够符合预期的质量和性能要求。 一、需求分析阶段 在…

0-1开发自己的obsidian plugin DAY 1

官网教程有点mismatch&#xff0c;而且从0-100跨度较大&#xff0c;&#x1f4dd;记录一下自己的踩坑过程 首先&#xff0c;官网给的example里只有main.ts&#xff0c;需要自己编译成main.js 在视频教程&#xff08;https://www.youtube.com/watch?v9lA-jaMNS0k&#xff09;里…

K8S服务发布

一 、服务发布方式对比 二者主要区别在于&#xff1a; 1. 部署复杂性&#xff1a;传统的服务发布方式通常涉及手动配置 和管理服务器、网络设置、负载均衡等&#xff0c;过程相对复 杂且容易出错。相比之下&#xff0c;Kubernetes服务发布方式 通过使用容器编排和自动化部署工…

大数据新视界 --大数据大厂之 Reactjs 在大数据应用开发中的优势与实践

&#x1f496;&#x1f496;&#x1f496;亲爱的朋友们&#xff0c;热烈欢迎你们来到 青云交的博客&#xff01;能与你们在此邂逅&#xff0c;我满心欢喜&#xff0c;深感无比荣幸。在这个瞬息万变的时代&#xff0c;我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…