线性规划------ + 案例 + Python源码求解(见文中)

目录

  • 一、代数模型(Algebraic Models)详解
    • 1.1什么是代数模型?
    • 1.2代数模型的基本形式
    • 1.3 安装所需要的Python包--运行下述案例
    • 1.4代数模型的应用案例
      • 案例 1:市场供需平衡模型
        • Python求解代码
        • Python求解结果如下图:
      • 案例 2:运输问题中的线性规划模型
        • 进行数学建模分析
          • 1. 目标函数
          • 2. 约束条件
        • Python求解代码
        • Python求解结果如下图:
      • 案例 3:电路分析中的欧姆定律应用
        • 进行数学建模分析
          • 1. 目标函数
          • 2. 约束条件
        • Python求解代码
        • Python求解结果如下图:

一、代数模型(Algebraic Models)详解

这个线性规划的数学模型很少,但是大家可以培养自己建模的思路,可以参考案例2、案例3,使用pulp非常直观的可以表示所建立的模型以及添加的约束条件。

1.1什么是代数模型?

代数模型是一种利用代数方程(如线性方程、多项式方程等)描述变量之间关系的数学模型。它通常用于描述静态系统或在某一时刻的系统状态。代数模型可以是线性或非线性的,具体取决于变量之间的关系类型。

1.2代数模型的基本形式

代数模型可以用以下一般形式表示:

  • 线性模型
    线性代数模型通过线性方程来描述变量之间的线性关系。
    例如,一个典型的线性模型形式如下:

      y = a 1 x 1 + a 2 x 2 + ⋯ + a n x n + b \ y = a_1x_1 + a_2x_2 + \cdots + a_nx_n + b  y=a1x1+a2x2++anxn+b

    其中, y y y 是因变量, x 1 , x 2 , … , x n x_1, x_2, \ldots, x_n x1,x2,,xn 是自变量, a 1 , a 2 , … , a n a_1, a_2, \ldots, a_n a1,a2,,an 是系数, b b b 是常数项。

  • 多项式模型
    多项式模型是描述变量之间多项式关系的模型,其形式为:

      y = a 0 + a 1 x + a 2 x 2 + ⋯ + a n x n \ y = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n  y=a0+a1x+a2x2++anxn

    其中, x x x 是自变量, a 0 , a 1 , … , a n a_0, a_1, \ldots, a_n a0,a1,,an 是多项式的系数。

1.3 安装所需要的Python包–运行下述案例

运行下述代码:

# 1.激活前文所配置的虚拟环境(不会的参考此专栏另一篇博客)
conda activate mathbuild2   # mathbuild2是你自己创建的虚拟环境,名字和你前面跟随教程创建的名字一样
# 2.安装所需的python包
pip install sympy scipy

运行结果如下:
在这里插入图片描述
验证是否成功安装:

# 复制下述代码,粘贴进anaconda prompt,然后回车

# 进入python
python

# 导入包
import sympy
import scipy

# 打印版本
print("SymPy 版本:", sympy.__version__)
print("SciPy 版本:", scipy.__version__)

运行结果如下图:,若出现版本号,则说明成功安装!
在这里插入图片描述

1.4代数模型的应用案例

案例 1:市场供需平衡模型

市场供需平衡模型用于描述市场上商品的供给量和需求量之间的关系。例如,设市场上的商品供给量 Q s Q_s Qs 和需求量 Q d Q_d Qd 分别由以下两个线性方程表示:

  Q s = c s + d s P \ Q_s = c_s + d_s P  Qs=cs+dsP

  Q d = c d − d d P \ Q_d = c_d - d_d P  Qd=cdddP

其中, P P P 是价格, c s , d s , c d , d d c_s, d_s, c_d, d_d cs,ds,cd,dd 是已知参数。市场均衡时,供给量等于需求量,即 Q s = Q d Q_s = Q_d Qs=Qd。求解上述方程可得市场均衡价格和数量。

Python求解代码

以下是使用Python求解该代数模型的代码示例:

from sympy import symbols, Eq, solve

# 定义符号变量
P = symbols('P')

# 已知参数
c_s = 50  # 供给的常数项
d_s = 3   # 供给的价格系数
c_d = 200 # 需求的常数项
d_d = 2   # 需求的价格系数

# 定义供给和需求方程
Q_s = c_s + d_s * P
Q_d = c_d - d_d * P

# 市场均衡条件 Q_s = Q_d
equation = Eq(Q_s, Q_d)

# 求解均衡价格
equilibrium_price = solve(equation, P)[0]
equilibrium_quantity = Q_s.subs(P, equilibrium_price)

# 输出结果
print(f"市场均衡价格: {equilibrium_price:.2f}")
print(f"市场均衡数量: {equilibrium_quantity:.2f}")
Python求解结果如下图:

在这里插入图片描述

案例 2:运输问题中的线性规划模型

在物流运输问题中,目标是找到最小成本的运输方案。该问题可以用线性规划模型表示,其中决策变量表示各运输路线的货物量,目标函数表示总运输成本,约束条件表示各个供应地和需求地的供需平衡。

假设有2个供应地和2个需求地,运输成本如下表:

需求地1需求地2
供应地146
供应地287

供应量和需求量分别为:

  • 供应地1:50单位
  • 供应地2:60单位
  • 需求地1:30单位
  • 需求地2:80单位
进行数学建模分析
1. 目标函数

我们希望最小化总运输成本:

Minimize  Z = 4 x 1 + 6 x 2 + 8 x 3 + 7 x 4 \text{Minimize } Z = 4x_1 + 6x_2 + 8x_3 + 7x_4 Minimize Z=4x1+6x2+8x3+7x4

其中:

  • x 1 x_1 x1是从供应地1到需求地1的运输量
  • x 2 x_2 x2是从供应地1到需求地2的运输量
  • x 3 x_3 x3是从供应地2到需求地1的运输量
  • x 4 x_4 x4 是从供应地2到需求地2的运输量
2. 约束条件

我们有如下约束条件:

  1. 供应地1的总供应量不超过50单位:

0 < x 1 + x 2 < = 50 0 < x_1 + x_2 <= 50 0<x1+x2<=50

  1. 供应地2的总供应量不超过60单位:

0 < x 3 + x 4 < = 60 0 < x_3 + x_4 <= 60 0<x3+x4<=60

  1. 需求地1的总需求量必须是30单位:

x 1 + x 3 = 30 x_1 + x_3 = 30 x1+x3=30

  1. 需求地2的总需求量必须是80单位:

x 2 + x 4 = 80 x_2 + x_4 = 80 x2+x4=80

Python求解代码

使用线性规划库 Pulp 求解此运输问题的代码如下:
Pulp非常好用,非常直观,安装代码如下:
pip install pulp
安装结果如下:
在这里插入图片描述

#导入pulp里面的子函数,库
from pulp import *

#创建求取问题的变量,也就是求取的函数的名字,+求取的是最大值还是最小值
# #Min:LpMinimiza;Max:LpMaximize
#Max_Z = LpProblem("Max",LpMaximize)
Min_Z = LpProblem("Min", LpMinimize)

#定义变量
# X = ['x1','x2','x3']
# sales = LpVariable.dicts("sales",X,lowBound=0,cat=LpInteger) #upBoard ,LpContinuous连续,LpInteger整数
x1 = LpVariable("x1",lowBound=0,upBound=None,cat=LpContinuous)
x2 = LpVariable("x2",lowBound=0,upBound=None,cat=LpContinuous)
x3 = LpVariable("x3",lowBound=0,upBound=None,cat=LpContinuous)
x4 = LpVariable("x4",lowBound=0,upBound=None,cat=LpContinuous)

#定义目标函数
Min_Z += 4*x1+6*x2+8*x3+7*x4

#添加约束条件
Min_Z += x1+x2 <=50
Min_Z += x3+x4 <=60
Min_Z += x1+x3 ==30
Min_Z += x2+x4 ==80
Min_Z += x1 >=0
Min_Z += x2 >=0
Min_Z += x3 >=0
Min_Z += x4 >=0

#求解问题
Min_Z.solve()

#输出求解结果
status = LpStatus[Min_Z.status]
#status 表示求解的状态,Optimal表示最优解,Infeasible表示无可行解,(Unbounded表示无界解)
solution = value(Min_Z.objective)
#,solution表示求解到解,Max_Z的值
print("Sales:",status)
print("Max_Z = ",solution)

#获取x1,x2,x3的值
x1 = value(x1)
x2 = value(x2)
x3 = value(x3)
x4 = value(x4)

print("x1 = ",x1)
print("x2 = ",x2)
print("x3 = ",x3)
print("x4 = ",x4)

print('Min_Z = ',4*x1+6*x2+8*x3+7*x4)

Python求解结果如下图:

在这里插入图片描述

案例 3:电路分析中的欧姆定律应用

在简单的电路分析中,欧姆定律( V = I R V = IR V=IR)描述了电阻 R R R 两端的电压 V V V 和电流 I I I 的线性关系。多个电阻组成的电路可以表示为一组线性方程,通过求解这些方程可以计算电路中的电流和电压分布。

进行数学建模分析
1. 目标函数

在这个问题中,目标函数可以是最小化或最大化通过电阻的电流,或者我们可以构造一个合适的目标函数来满足欧姆定律。这里,我们假设目标是最小化总电流 (I = I_1 + I_2),以满足给定的电压条件:

Minimize  I = I 1 + I 2 \text{Minimize } I = I_1 + I_2 Minimize I=I1+I2

2. 约束条件

根据欧姆定律和电路的特性,我们有以下约束条件:

对于电阻 (R_1) 和 (R_2) 的欧姆定律:

V = I 1 ⋅ R 1 和 V = I 2 ⋅ R 2 V = I_1 \cdot R_1 \quad \text{和} \quad V = I_2 \cdot R_2 V=I1R1V=I2R2
这两个条件表示每个电阻两端的电压必须等于总电压 (V = 15V)。

Python求解代码

假设电路中有两个电阻 R 1 = 5 Ω R_1 = 5 \Omega R1= R 2 = 10 Ω R_2 = 10 \Omega R2=10Ω,并联连接,总电压为 V = 15 V V = 15V V=15V。求解电路中各分支的电流。

from pulp import LpProblem, LpMinimize, LpVariable, lpSum, value

# 定义线性规划问题
Min_I = LpProblem("Minimize_Current", LpMinimize)

# 定义决策变量,I1 和 I2 为电流,通过每个电阻的电流
I1 = LpVariable('I1', lowBound=0)  # 电阻1中的电流
I2 = LpVariable('I2', lowBound=0)  # 电阻2中的电流

# 电压
V = 15
R1 = 5
R2 = 10

# 定义目标函数:最小化总电流 I = I1 + I2
Min_I += I1 + I2, "Total_Current"

# 添加约束条件:满足欧姆定律
Min_I += I1 * R1 == V, "Ohm_Law_R1"
Min_I += I2 * R2 == V, "Ohm_Law_R2"

# 求解问题
Min_I.solve()

# 输出结果
print("电阻1中的电流 I1: ", value(I1), "A")
print("电阻2中的电流 I2: ", value(I2), "A")
print("总电流 I: ", value(I1) + value(I2), "A")

Python求解结果如下图:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/876151.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【快速解决】搭建VUE+VScode+elementUI开发环境,Vue环境配置

目录 1、通过这个之间下载node.js&#xff08;全选next即可&#xff09; 2、winr检验是否安装成功&#xff08;运行下面两个命令即可&#xff09; 3、将下面我给你的这个压缩包解压&#xff0c;然后放到空间足够的磁盘里面 4、【重点】设置环境变量 第一个变量路径里面长这…

ubuntu中QT+opencv在QLable上显示摄像头

ubuntu中QTopencv在QLable上显示摄像头 饭前的一篇文章吧&#xff0c;写完吃饭走 图像在机器视觉中的重要性是不可忽视的。机器视觉是指计算机利用图像处理技术进行图像识别、分析和理解的科学与技术领域。图像是机器视觉的输入数据&#xff0c;通过分析和处理图像&#xff0…

HTML中的文字与分区标记

1.font标记&#xff1a;用来设置文字的字体&#xff0c;大小&#xff0c;颜色&#xff0c;等属性 <!--font:font标记用来设置字体大小颜色属性size:设置字号&#xff0c;默认是3号&#xff0c;1表示4号&#xff0c;-1表示2号&#xff0c;取值范围是[1,7]或[-7,-1]color:设置…

Docker零基础入门

参考课程https://www.bilibili.com/video/BV1VC4y177re/?vd_source=b15169a302bee35f484245aecc69d4dd 参考书籍Docker 实践 - 面向 AI 开发人员的 Docker 实践 (dockerpractice.readthedocs.io) 1. 什么是Docker 1.1. Docker起源 随着计算机的发展,计算机上已经可以运行多…

C++ | Leetcode C++题解之第406题根据身高重建队列

题目&#xff1a; 题解&#xff1a; class Solution { public:vector<vector<int>> reconstructQueue(vector<vector<int>>& people) {sort(people.begin(), people.end(), [](const vector<int>& u, const vector<int>& v) …

第108集《大佛顶首楞严经》

请打开讲义241面。我们讲到嗅报&#xff0c;鼻根当中嗅的功能。 本根发相 发明二相&#xff1a;一者通闻&#xff0c;被诸恶气&#xff0c;熏极心扰。二者塞闻&#xff0c;气掩不通&#xff0c;闷绝于地。 以鼻根造业到无间地狱以后&#xff0c;他有二种受苦的相状&#xf…

[C++] 剖析多态的原理及实现

文章目录 多态的概念及定义编译时多态&#xff08;静态多态&#xff09;运行时多态&#xff08;动态多态&#xff09;动态多态的原理示例&#xff1a;运行时多态 两种多态的区别 多态的实现基本条件虚函数虚函数的重写与覆盖虚函数重写的其他问题协变析构函数的重写 C11 中的 o…

引领智能家居新风尚,WTN6040F门铃解决方案——让家的呼唤更动听

在追求高效与便捷的智能家居时代&#xff0c;每一个细节都承载着我们对美好生活的向往。WTN6040F&#xff0c;作为一款专为现代家庭设计的低成本、高性能门铃解决方案&#xff0c;正以其独特的魅力&#xff0c;悄然改变着我们的居家生活体验。 芯片功能特点&#xff1a; 1.2.4…

直流电源纹波怎么测量?示波器的探头和带宽如何选择?

对于电源工程师来说&#xff0c;精确测量电源纹波是一项基本技能。本文将详细介绍直流电源纹波测试时的注意事项&#xff0c;包括示波器探头的选择、带宽设置、时基选择&#xff0c;确保精准测量直流电源纹波。 一、选择合适的示波器带宽 为了避免电路的高频噪声影响电源纹波的…

基于树莓派ubuntu20.04的ros-noetic小车

目录 一、小车的架构 1.1 总体的概述 1.2 驱动系统 1.3 控制系统 二、驱动系统开发 2.1 PC端Ubuntu20.04安装 2.2 树莓派Ubuntu20.04安装 2.3 PC端虚拟机设置静态IP 2.4 树莓派设置静态IP 2.5 树莓派启动ssh进行远程开发 2.5 arduino ide 开发环境搭建 2.5.1 PC…

C++: 二叉树进阶面试题

做每件事之前都心存诚意, 就会事半功倍. 目录 前言1. 根据二叉树创建字符串2. 二叉树的层序遍历Ⅰ3. 二叉树的层序遍历Ⅱ4. 二叉树的最近公共祖先5. 二叉搜索树与双向链表6. 根据一棵树的前序遍历与中序遍历构造二叉树7. 根据一棵树的中序遍历与后序遍历构造二叉树8. 二叉树的…

【数据结构】8——图3,十字链表,邻接多重表

数据结构8——图3&#xff0c;十字链表&#xff0c;邻接多重表 文章目录 数据结构8——图3&#xff0c;十字链表&#xff0c;邻接多重表前言一、十字链表结构例子 复杂例子 二、邻接多重表&#xff08;Adjacency Multilist&#xff09;例子 前言 除了之前的邻接矩阵和邻接表 …

在k8s中,客户端访问服务的链路流程,ingress--->service--->deployment--->pod--->container

图片来源&#xff1a;自己画的 ingress是一个API资源。 客户端访问ingress的不同url ingress给客户端返回不同的服务。 就和nginx反向代理服务器一样。 根据不同的url&#xff0c;给客户端返回不同的服务。 -----------------------------------------------------------…

MySql基础-单表操作

1. MYSQL概述 1.1 数据模型 关系型数据库 关系型数据库(RDBMS)&#xff1a;建立在关系模型基础上&#xff0c;由多张相互连接的二维表组成的数据库。 特点&#xff1a; 使用表存储数据&#xff0c;格式统一&#xff0c;便于维护 使用SQL语言操作&#xff0c;标准统一&…

班迪录屏和这三款录屏工具,一键操作,太方便了!

嘿&#xff0c;小伙伴们&#xff01;今天我要跟大家分享几款超棒的录屏工具&#xff0c;它们绝对是我们在工作和学习中不可或缺的好帮&#xff1b;这些工具功能强大且操作简单&#xff0c;下面就让我来详细介绍一下它们的使用体验和好用之处吧&#xff01; 班迪录屏工具使用体…

医学数据分析实训 项目二 数据预处理作业

文章目录 项目二 数据预处理一、实践目的二、实践平台三、实践内容任务一&#xff1a;合并数据集任务二&#xff1a;独热编码任务三&#xff1a;数据预处理任务四&#xff1a;针对“项目一 医学数据采集”中“3. 通过 UCI 机器学习库下载数据集”任务所下载的数据集进行预处理。…

新能源汽车BMS 学习笔记篇—AFE 菊花链通信中电容隔离 电感隔离的使用

在汽车高压BMS系统中&#xff0c;通常采用 CAN 总线或菊花链&#xff08;&#xff08;Daisy Chain&#xff09;架构。菊花链架构通过串行连接每个节点&#xff0c;通常只需要两条信号线穿过所有节点。相比之下&#xff0c;CAN总线通常需要多个并行连接到总线上&#xff0c;布线…

一些写leetcode的笔记

标准库中的string类没有实现像C#和Java中string类的split函数&#xff0c;所以想要分割字符串的时候需要我们自己手动实现。但是有了stringstream类就可以很容易的实现&#xff0c;stringstream默认遇到空格、tab、回车换行会停止字节流输出。 #include <sstream> #incl…

沉浸式体验Stability AI最新超强AI图片生成模型Ultra

2024年9月4日&#xff0c;亚马逊云科技在Amazon Bedrock上新了Stability AI最新的的三款文本图像生成模型&#xff1a;他们分别是Stable Image Ultra、Stable Diffusion 3 Large 和 Stable Image Core。全新的模型在处理多主题提示词、图像质量和图片排版上较上一代模型有显著提…

美团图床设置教程

大厂图床&#xff0c;CDN加速 项目地址&#xff1a;https://github.com/woniu336/mt-img 使用方法 在mt.php填上你的token即可&#xff0c;然后打开index.html上传图片 获取token方法 注册https://czz.meituan.com/发布视频&#xff0c;上传封面&#xff0c;注意在上传封面后…