【Python机器学习】实验16 卷积、下采样、经典卷积网络

文章目录

  • 卷积、下采样、经典卷积网络
    • 1. 对图像进行卷积处理
    • 2. 池化
    • 3. VGGNET
    • 4. 采用预训练的Resnet实现猫狗识别
  • TensorFlow2.2基本应用
    • 5. 使用深度学习进行手写数字识别

卷积、下采样、经典卷积网络

1. 对图像进行卷积处理

import cv2
path = 'data\instance\p67.jpg' 
input_img = cv2.imread(path)
import cv2 
import numpy as np 
#分别将三个通道进行卷积,然后合并通道

def conv(image, kernel): 
    conv_b = convolve(image[:, :, 0], kernel) 
    conv_g = convolve(image[:, :, 1], kernel) 
    conv_r = convolve(image[:, :, 2], kernel) 
    output = np.dstack([conv_b, conv_g, conv_r]) 
    return output


#卷积处理
def convolve(image, kernel): 
    h_kernel, w_kernel = kernel.shape 
    h_image, w_image = image.shape
    h_output = h_image - h_kernel + 1 
    w_output = w_image - w_kernel + 1 
    output = np.zeros((h_output, w_output), np.uint8) 
    for i in range(h_output): 
        for j in range(w_output): 
            output[i, j] = np.multiply(image[i:i + h_kernel, j:j + w_kernel], kernel).sum() 
    return output

if __name__ == '__main__': 
    path = 'data\instance\p67.jpg' 
    input_img = cv2.imread(path) 
    # 1.锐化卷积核 
    #kernel = np.array([[-1,-1,-1],[-1,9,-1],[-1,-1,-1]]) 
    # 2.模糊卷积核
    kernel = np.array([[0.1,0.1,0.1],[0.1,0.2,0.1],[0.1,0.1,0.1]])     
    output_img = conv(input_img, kernel)
    cv2.imwrite(path.replace('.jpg', '-processed.jpg'), output_img) 
    cv2.imshow('Output Image', output_img) 
    cv2.waitKey(0)

2. 池化

img = cv2.imread('data\instance\dog.jpg')
img.shape
(4064, 3216, 3)
import numpy as np
from PIL import Image
import cv2
import matplotlib.pyplot as plt

#均值池化
def AVGpooling(imgData, strdW, strdH):
    W,H = imgData.shape
    newImg = []
    for i in range(0,W,strdW):
        line = []
        for j in range(0,H,strdH):
            x = imgData[i:i+strdW,j:j+strdH]     #获取当前待池化区域
            avgValue=np.sum(x)/(strdW*strdH)  #求该区域的均值
            line.append(avgValue)     
        newImg.append(line)
    return np.array(newImg)

#最大池化
def MAXpooling(imgData, strdW, strdH):
    W,H = imgData.shape
    newImg = []
    for i in range(0,W,strdW):
        line = []
        for j in range(0,H,strdH):
            x = imgData[i:i+strdW,j:j+strdH]    #获取当前待池化区域
            maxValue=np.max(x)            #求该区域的最大值
            line.append(maxValue)        
        newImg.append(line)
    return np.array(newImg)

img = cv2.imread('data\instance\dog.jpg')
imgData= img[:,:,1]   #绿色通道


#显示原图
plt.subplot(221)
plt.imshow(img)
plt.axis('off')

#显示原始绿通道图
plt.subplot(222)
plt.imshow(imgData)
plt.axis('off')

#显示平均池化结果图
AVGimg = AVGpooling(imgData, 2, 2)
plt.subplot(223)
plt.imshow(AVGimg)
plt.axis('off')

#显示最大池化结果图
MAXimg = MAXpooling(imgData, 2, 2)
plt.subplot(224)
plt.imshow(MAXimg)
plt.axis('off')
plt.show()

1

3. VGGNET

import numpy as np 
from tensorflow.keras import backend as K 
import matplotlib.pyplot as plt 
from tensorflow.keras.applications import vgg16   # Keras内置 VGG-16模块,直接可调用。 
from tensorflow.keras.preprocessing import image 
from tensorflow.keras.applications.vgg16 import preprocess_input
import math
input_size = 224   # 网络输入图像的大小,长宽相等 
kernel_size = 64   # 可视化卷积核的大小,长宽相等 
layer_vis = True    # 特征图是否可视化
kernel_vis = True   # 卷积核是否可视化
each_layer = False  # 卷积核可视化是否每层都做
which_layer = 1    # 如果不是每层都做,那么第几个卷积层
path = 'data\instance\p67.jpg' 


img = image.load_img(path, target_size=(input_size, input_size)) 
img = image.img_to_array(img) 
img = np.expand_dims(img, axis=0) 
img = preprocess_input(img)  #标准化预处理
model = vgg16.VGG16(include_top=True, weights='imagenet')


def network_configuration(): 
    all_channels = [64, 64, 64, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512] 
    down_sampling = [1, 1, 1 / 2, 1 / 2, 1 / 2, 1 / 4, 1 / 4, 1 / 4, 1 / 4, 1 / 8, 1 / 8, 1 / 8, 1 / 8, 1 / 16, 1 / 16, 1 / 16, 1 / 16, 1 / 32] 
    conv_layers = [1, 2, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17] 
    conv_channels = [64, 64, 128, 128, 256, 256, 256, 512, 512, 512, 512, 512, 512] 
    return all_channels, down_sampling, conv_layers, conv_channels

def layer_visualization(model, img, layer_num, channel, ds): 
    # 设置可视化的层 
    layer = K.function([model.layers[0].input], [model.layers[layer_num].output]) 
    f = layer([img])[0] 
    feature_aspect = math.ceil(math.sqrt(channel)) 
    single_size = int(input_size * ds)
    plt.figure(figsize=(8, 8.5)) 
    plt.suptitle('Layer-' + str(layer_num), fontsize=22)
    plt.subplots_adjust(left=0.02, bottom=0.02, right=0.98, top=0.94, wspace=0.05, hspace=0.05) 
    for i_channel in range(channel): 
        print('Channel-{} in Layer-{} is running.'.format(i_channel + 1, layer_num)) 
        show_img = f[:, :, :, i_channel] 
        show_img = np.reshape(show_img, (single_size, single_size)) 
        plt.subplot(feature_aspect, feature_aspect, i_channel + 1) 
        plt.imshow(show_img)  
        plt.axis('off') 
    fig = plt.gcf() 
    fig.savefig('data/instance/feature_kernel_images/layer_' + str(layer_num).zfill(2) + '.png', format='png', dpi=300)
    plt.show()
    
all_channels, down_sampling, conv_layers, conv_channels = network_configuration()
if layer_vis: 
    for i in range(len(all_channels)): 
        layer_visualization(model, img, i + 1, all_channels[i], down_sampling[i])

4. 采用预训练的Resnet实现猫狗识别

from tensorflow.keras.applications.resnet50 import ResNet50 
from tensorflow.keras.preprocessing import image 
from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions 
import numpy as np 
from PIL import ImageFont, ImageDraw, Image 
import cv2
img_path = 'data\instance\dog.jpg'     #进行狗的判断
#img_path = 'cat.jpg'     #进行猫的判断
#img_path = 'deer.jpg'    #进行鹿的判断
weights_path = 'resnet50_weights.h5'
img = image.load_img(img_path, target_size=(224, 224)) 
x = image.img_to_array(img) 
x = np.expand_dims(x, axis=0) 
x = preprocess_input(x)
def get_model(): 
    model = ResNet50(weights=weights_path) 
    # 导入模型以及预训练权重
    print(model.summary()) # 打印模型概况 
    return model
model = get_model() 

Model: "resnet50"
__________________________________________________________________________________________________
 Layer (type)                   Output Shape         Param #     Connected to                     
==================================================================================================
 input_4 (InputLayer)           [(None, 224, 224, 3  0           []                               
                                )]                                                                
                                                                                                  
 conv1_pad (ZeroPadding2D)      (None, 230, 230, 3)  0           ['input_4[0][0]']                
                                                                                                  
 conv1_conv (Conv2D)            (None, 112, 112, 64  9472        ['conv1_pad[0][0]']              
                                )                                                                 
                                                                                                  
 conv1_bn (BatchNormalization)  (None, 112, 112, 64  256         ['conv1_conv[0][0]']             
                                )                                                                 
                                                                                                  
 conv1_relu (Activation)        (None, 112, 112, 64  0           ['conv1_bn[0][0]']               
                                )                                                                 
                                                                                                  
 pool1_pad (ZeroPadding2D)      (None, 114, 114, 64  0           ['conv1_relu[0][0]']             
                                )                                                                 
                                                                                                  
 pool1_pool (MaxPooling2D)      (None, 56, 56, 64)   0           ['pool1_pad[0][0]']              
                                                                                                  
 conv2_block1_1_conv (Conv2D)   (None, 56, 56, 64)   4160        ['pool1_pool[0][0]']             
                                                                                                  
 conv2_block1_1_bn (BatchNormal  (None, 56, 56, 64)  256         ['conv2_block1_1_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv2_block1_1_relu (Activatio  (None, 56, 56, 64)  0           ['conv2_block1_1_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv2_block1_2_conv (Conv2D)   (None, 56, 56, 64)   36928       ['conv2_block1_1_relu[0][0]']    
                                                                                                  
 conv2_block1_2_bn (BatchNormal  (None, 56, 56, 64)  256         ['conv2_block1_2_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv2_block1_2_relu (Activatio  (None, 56, 56, 64)  0           ['conv2_block1_2_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv2_block1_0_conv (Conv2D)   (None, 56, 56, 256)  16640       ['pool1_pool[0][0]']             
                                                                                                  
 conv2_block1_3_conv (Conv2D)   (None, 56, 56, 256)  16640       ['conv2_block1_2_relu[0][0]']    
                                                                                                  
 conv2_block1_0_bn (BatchNormal  (None, 56, 56, 256)  1024       ['conv2_block1_0_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv2_block1_3_bn (BatchNormal  (None, 56, 56, 256)  1024       ['conv2_block1_3_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv2_block1_add (Add)         (None, 56, 56, 256)  0           ['conv2_block1_0_bn[0][0]',      
                                                                  'conv2_block1_3_bn[0][0]']      
                                                                                                  
 conv2_block1_out (Activation)  (None, 56, 56, 256)  0           ['conv2_block1_add[0][0]']       
                                                                                                  
 conv2_block2_1_conv (Conv2D)   (None, 56, 56, 64)   16448       ['conv2_block1_out[0][0]']       
                                                                                                  
 conv2_block2_1_bn (BatchNormal  (None, 56, 56, 64)  256         ['conv2_block2_1_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv2_block2_1_relu (Activatio  (None, 56, 56, 64)  0           ['conv2_block2_1_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv2_block2_2_conv (Conv2D)   (None, 56, 56, 64)   36928       ['conv2_block2_1_relu[0][0]']    
                                                                                                  
 conv2_block2_2_bn (BatchNormal  (None, 56, 56, 64)  256         ['conv2_block2_2_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv2_block2_2_relu (Activatio  (None, 56, 56, 64)  0           ['conv2_block2_2_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv2_block2_3_conv (Conv2D)   (None, 56, 56, 256)  16640       ['conv2_block2_2_relu[0][0]']    
                                                                                                  
 conv2_block2_3_bn (BatchNormal  (None, 56, 56, 256)  1024       ['conv2_block2_3_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv2_block2_add (Add)         (None, 56, 56, 256)  0           ['conv2_block1_out[0][0]',       
                                                                  'conv2_block2_3_bn[0][0]']      
                                                                                                  
 conv2_block2_out (Activation)  (None, 56, 56, 256)  0           ['conv2_block2_add[0][0]']       
                                                                                                  
 conv2_block3_1_conv (Conv2D)   (None, 56, 56, 64)   16448       ['conv2_block2_out[0][0]']       
                                                                                                  
 conv2_block3_1_bn (BatchNormal  (None, 56, 56, 64)  256         ['conv2_block3_1_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv2_block3_1_relu (Activatio  (None, 56, 56, 64)  0           ['conv2_block3_1_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv2_block3_2_conv (Conv2D)   (None, 56, 56, 64)   36928       ['conv2_block3_1_relu[0][0]']    
                                                                                                  
 conv2_block3_2_bn (BatchNormal  (None, 56, 56, 64)  256         ['conv2_block3_2_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv2_block3_2_relu (Activatio  (None, 56, 56, 64)  0           ['conv2_block3_2_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv2_block3_3_conv (Conv2D)   (None, 56, 56, 256)  16640       ['conv2_block3_2_relu[0][0]']    
                                                                                                  
 conv2_block3_3_bn (BatchNormal  (None, 56, 56, 256)  1024       ['conv2_block3_3_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv2_block3_add (Add)         (None, 56, 56, 256)  0           ['conv2_block2_out[0][0]',       
                                                                  'conv2_block3_3_bn[0][0]']      
                                                                                                  
 conv2_block3_out (Activation)  (None, 56, 56, 256)  0           ['conv2_block3_add[0][0]']       
                                                                                                  
 conv3_block1_1_conv (Conv2D)   (None, 28, 28, 128)  32896       ['conv2_block3_out[0][0]']       
                                                                                                  
 conv3_block1_1_bn (BatchNormal  (None, 28, 28, 128)  512        ['conv3_block1_1_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv3_block1_1_relu (Activatio  (None, 28, 28, 128)  0          ['conv3_block1_1_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv3_block1_2_conv (Conv2D)   (None, 28, 28, 128)  147584      ['conv3_block1_1_relu[0][0]']    
                                                                                                  
 conv3_block1_2_bn (BatchNormal  (None, 28, 28, 128)  512        ['conv3_block1_2_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv3_block1_2_relu (Activatio  (None, 28, 28, 128)  0          ['conv3_block1_2_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv3_block1_0_conv (Conv2D)   (None, 28, 28, 512)  131584      ['conv2_block3_out[0][0]']       
                                                                                                  
 conv3_block1_3_conv (Conv2D)   (None, 28, 28, 512)  66048       ['conv3_block1_2_relu[0][0]']    
                                                                                                  
 conv3_block1_0_bn (BatchNormal  (None, 28, 28, 512)  2048       ['conv3_block1_0_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv3_block1_3_bn (BatchNormal  (None, 28, 28, 512)  2048       ['conv3_block1_3_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv3_block1_add (Add)         (None, 28, 28, 512)  0           ['conv3_block1_0_bn[0][0]',      
                                                                  'conv3_block1_3_bn[0][0]']      
                                                                                                  
 conv3_block1_out (Activation)  (None, 28, 28, 512)  0           ['conv3_block1_add[0][0]']       
                                                                                                  
 conv3_block2_1_conv (Conv2D)   (None, 28, 28, 128)  65664       ['conv3_block1_out[0][0]']       
                                                                                                  
 conv3_block2_1_bn (BatchNormal  (None, 28, 28, 128)  512        ['conv3_block2_1_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv3_block2_1_relu (Activatio  (None, 28, 28, 128)  0          ['conv3_block2_1_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv3_block2_2_conv (Conv2D)   (None, 28, 28, 128)  147584      ['conv3_block2_1_relu[0][0]']    
                                                                                                  
 conv3_block2_2_bn (BatchNormal  (None, 28, 28, 128)  512        ['conv3_block2_2_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv3_block2_2_relu (Activatio  (None, 28, 28, 128)  0          ['conv3_block2_2_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv3_block2_3_conv (Conv2D)   (None, 28, 28, 512)  66048       ['conv3_block2_2_relu[0][0]']    
                                                                                                  
 conv3_block2_3_bn (BatchNormal  (None, 28, 28, 512)  2048       ['conv3_block2_3_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv3_block2_add (Add)         (None, 28, 28, 512)  0           ['conv3_block1_out[0][0]',       
                                                                  'conv3_block2_3_bn[0][0]']      
                                                                                                  
 conv3_block2_out (Activation)  (None, 28, 28, 512)  0           ['conv3_block2_add[0][0]']       
                                                                                                  
 conv3_block3_1_conv (Conv2D)   (None, 28, 28, 128)  65664       ['conv3_block2_out[0][0]']       
                                                                                                  
 conv3_block3_1_bn (BatchNormal  (None, 28, 28, 128)  512        ['conv3_block3_1_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv3_block3_1_relu (Activatio  (None, 28, 28, 128)  0          ['conv3_block3_1_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv3_block3_2_conv (Conv2D)   (None, 28, 28, 128)  147584      ['conv3_block3_1_relu[0][0]']    
                                                                                                  
 conv3_block3_2_bn (BatchNormal  (None, 28, 28, 128)  512        ['conv3_block3_2_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv3_block3_2_relu (Activatio  (None, 28, 28, 128)  0          ['conv3_block3_2_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv3_block3_3_conv (Conv2D)   (None, 28, 28, 512)  66048       ['conv3_block3_2_relu[0][0]']    
                                                                                                  
 conv3_block3_3_bn (BatchNormal  (None, 28, 28, 512)  2048       ['conv3_block3_3_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv3_block3_add (Add)         (None, 28, 28, 512)  0           ['conv3_block2_out[0][0]',       
                                                                  'conv3_block3_3_bn[0][0]']      
                                                                                                  
 conv3_block3_out (Activation)  (None, 28, 28, 512)  0           ['conv3_block3_add[0][0]']       
                                                                                                  
 conv3_block4_1_conv (Conv2D)   (None, 28, 28, 128)  65664       ['conv3_block3_out[0][0]']       
                                                                                                  
 conv3_block4_1_bn (BatchNormal  (None, 28, 28, 128)  512        ['conv3_block4_1_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv3_block4_1_relu (Activatio  (None, 28, 28, 128)  0          ['conv3_block4_1_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv3_block4_2_conv (Conv2D)   (None, 28, 28, 128)  147584      ['conv3_block4_1_relu[0][0]']    
                                                                                                  
 conv3_block4_2_bn (BatchNormal  (None, 28, 28, 128)  512        ['conv3_block4_2_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv3_block4_2_relu (Activatio  (None, 28, 28, 128)  0          ['conv3_block4_2_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv3_block4_3_conv (Conv2D)   (None, 28, 28, 512)  66048       ['conv3_block4_2_relu[0][0]']    
                                                                                                  
 conv3_block4_3_bn (BatchNormal  (None, 28, 28, 512)  2048       ['conv3_block4_3_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv3_block4_add (Add)         (None, 28, 28, 512)  0           ['conv3_block3_out[0][0]',       
                                                                  'conv3_block4_3_bn[0][0]']      
                                                                                                  
 conv3_block4_out (Activation)  (None, 28, 28, 512)  0           ['conv3_block4_add[0][0]']       
                                                                                                  
 conv4_block1_1_conv (Conv2D)   (None, 14, 14, 256)  131328      ['conv3_block4_out[0][0]']       
                                                                                                  
 conv4_block1_1_bn (BatchNormal  (None, 14, 14, 256)  1024       ['conv4_block1_1_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv4_block1_1_relu (Activatio  (None, 14, 14, 256)  0          ['conv4_block1_1_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv4_block1_2_conv (Conv2D)   (None, 14, 14, 256)  590080      ['conv4_block1_1_relu[0][0]']    
                                                                                                  
 conv4_block1_2_bn (BatchNormal  (None, 14, 14, 256)  1024       ['conv4_block1_2_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv4_block1_2_relu (Activatio  (None, 14, 14, 256)  0          ['conv4_block1_2_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv4_block1_0_conv (Conv2D)   (None, 14, 14, 1024  525312      ['conv3_block4_out[0][0]']       
                                )                                                                 
                                                                                                  
 conv4_block1_3_conv (Conv2D)   (None, 14, 14, 1024  263168      ['conv4_block1_2_relu[0][0]']    
                                )                                                                 
                                                                                                  
 conv4_block1_0_bn (BatchNormal  (None, 14, 14, 1024  4096       ['conv4_block1_0_conv[0][0]']    
 ization)                       )                                                                 
                                                                                                  
 conv4_block1_3_bn (BatchNormal  (None, 14, 14, 1024  4096       ['conv4_block1_3_conv[0][0]']    
 ization)                       )                                                                 
                                                                                                  
 conv4_block1_add (Add)         (None, 14, 14, 1024  0           ['conv4_block1_0_bn[0][0]',      
                                )                                 'conv4_block1_3_bn[0][0]']      
                                                                                                  
 conv4_block1_out (Activation)  (None, 14, 14, 1024  0           ['conv4_block1_add[0][0]']       
                                )                                                                 
                                                                                                  
 conv4_block2_1_conv (Conv2D)   (None, 14, 14, 256)  262400      ['conv4_block1_out[0][0]']       
                                                                                                  
 conv4_block2_1_bn (BatchNormal  (None, 14, 14, 256)  1024       ['conv4_block2_1_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv4_block2_1_relu (Activatio  (None, 14, 14, 256)  0          ['conv4_block2_1_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv4_block2_2_conv (Conv2D)   (None, 14, 14, 256)  590080      ['conv4_block2_1_relu[0][0]']    
                                                                                                  
 conv4_block2_2_bn (BatchNormal  (None, 14, 14, 256)  1024       ['conv4_block2_2_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv4_block2_2_relu (Activatio  (None, 14, 14, 256)  0          ['conv4_block2_2_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv4_block2_3_conv (Conv2D)   (None, 14, 14, 1024  263168      ['conv4_block2_2_relu[0][0]']    
                                )                                                                 
                                                                                                  
 conv4_block2_3_bn (BatchNormal  (None, 14, 14, 1024  4096       ['conv4_block2_3_conv[0][0]']    
 ization)                       )                                                                 
                                                                                                  
 conv4_block2_add (Add)         (None, 14, 14, 1024  0           ['conv4_block1_out[0][0]',       
                                )                                 'conv4_block2_3_bn[0][0]']      
                                                                                                  
 conv4_block2_out (Activation)  (None, 14, 14, 1024  0           ['conv4_block2_add[0][0]']       
                                )                                                                 
                                                                                                  
 conv4_block3_1_conv (Conv2D)   (None, 14, 14, 256)  262400      ['conv4_block2_out[0][0]']       
                                                                                                  
 conv4_block3_1_bn (BatchNormal  (None, 14, 14, 256)  1024       ['conv4_block3_1_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv4_block3_1_relu (Activatio  (None, 14, 14, 256)  0          ['conv4_block3_1_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv4_block3_2_conv (Conv2D)   (None, 14, 14, 256)  590080      ['conv4_block3_1_relu[0][0]']    
                                                                                                  
 conv4_block3_2_bn (BatchNormal  (None, 14, 14, 256)  1024       ['conv4_block3_2_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv4_block3_2_relu (Activatio  (None, 14, 14, 256)  0          ['conv4_block3_2_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv4_block3_3_conv (Conv2D)   (None, 14, 14, 1024  263168      ['conv4_block3_2_relu[0][0]']    
                                )                                                                 
                                                                                                  
 conv4_block3_3_bn (BatchNormal  (None, 14, 14, 1024  4096       ['conv4_block3_3_conv[0][0]']    
 ization)                       )                                                                 
                                                                                                  
 conv4_block3_add (Add)         (None, 14, 14, 1024  0           ['conv4_block2_out[0][0]',       
                                )                                 'conv4_block3_3_bn[0][0]']      
                                                                                                  
 conv4_block3_out (Activation)  (None, 14, 14, 1024  0           ['conv4_block3_add[0][0]']       
                                )                                                                 
                                                                                                  
 conv4_block4_1_conv (Conv2D)   (None, 14, 14, 256)  262400      ['conv4_block3_out[0][0]']       
                                                                                                  
 conv4_block4_1_bn (BatchNormal  (None, 14, 14, 256)  1024       ['conv4_block4_1_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv4_block4_1_relu (Activatio  (None, 14, 14, 256)  0          ['conv4_block4_1_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv4_block4_2_conv (Conv2D)   (None, 14, 14, 256)  590080      ['conv4_block4_1_relu[0][0]']    
                                                                                                  
 conv4_block4_2_bn (BatchNormal  (None, 14, 14, 256)  1024       ['conv4_block4_2_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv4_block4_2_relu (Activatio  (None, 14, 14, 256)  0          ['conv4_block4_2_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv4_block4_3_conv (Conv2D)   (None, 14, 14, 1024  263168      ['conv4_block4_2_relu[0][0]']    
                                )                                                                 
                                                                                                  
 conv4_block4_3_bn (BatchNormal  (None, 14, 14, 1024  4096       ['conv4_block4_3_conv[0][0]']    
 ization)                       )                                                                 
                                                                                                  
 conv4_block4_add (Add)         (None, 14, 14, 1024  0           ['conv4_block3_out[0][0]',       
                                )                                 'conv4_block4_3_bn[0][0]']      
                                                                                                  
 conv4_block4_out (Activation)  (None, 14, 14, 1024  0           ['conv4_block4_add[0][0]']       
                                )                                                                 
                                                                                                  
 conv4_block5_1_conv (Conv2D)   (None, 14, 14, 256)  262400      ['conv4_block4_out[0][0]']       
                                                                                                  
 conv4_block5_1_bn (BatchNormal  (None, 14, 14, 256)  1024       ['conv4_block5_1_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv4_block5_1_relu (Activatio  (None, 14, 14, 256)  0          ['conv4_block5_1_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv4_block5_2_conv (Conv2D)   (None, 14, 14, 256)  590080      ['conv4_block5_1_relu[0][0]']    
                                                                                                  
 conv4_block5_2_bn (BatchNormal  (None, 14, 14, 256)  1024       ['conv4_block5_2_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv4_block5_2_relu (Activatio  (None, 14, 14, 256)  0          ['conv4_block5_2_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv4_block5_3_conv (Conv2D)   (None, 14, 14, 1024  263168      ['conv4_block5_2_relu[0][0]']    
                                )                                                                 
                                                                                                  
 conv4_block5_3_bn (BatchNormal  (None, 14, 14, 1024  4096       ['conv4_block5_3_conv[0][0]']    
 ization)                       )                                                                 
                                                                                                  
 conv4_block5_add (Add)         (None, 14, 14, 1024  0           ['conv4_block4_out[0][0]',       
                                )                                 'conv4_block5_3_bn[0][0]']      
                                                                                                  
 conv4_block5_out (Activation)  (None, 14, 14, 1024  0           ['conv4_block5_add[0][0]']       
                                )                                                                 
                                                                                                  
 conv4_block6_1_conv (Conv2D)   (None, 14, 14, 256)  262400      ['conv4_block5_out[0][0]']       
                                                                                                  
 conv4_block6_1_bn (BatchNormal  (None, 14, 14, 256)  1024       ['conv4_block6_1_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv4_block6_1_relu (Activatio  (None, 14, 14, 256)  0          ['conv4_block6_1_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv4_block6_2_conv (Conv2D)   (None, 14, 14, 256)  590080      ['conv4_block6_1_relu[0][0]']    
                                                                                                  
 conv4_block6_2_bn (BatchNormal  (None, 14, 14, 256)  1024       ['conv4_block6_2_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv4_block6_2_relu (Activatio  (None, 14, 14, 256)  0          ['conv4_block6_2_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv4_block6_3_conv (Conv2D)   (None, 14, 14, 1024  263168      ['conv4_block6_2_relu[0][0]']    
                                )                                                                 
                                                                                                  
 conv4_block6_3_bn (BatchNormal  (None, 14, 14, 1024  4096       ['conv4_block6_3_conv[0][0]']    
 ization)                       )                                                                 
                                                                                                  
 conv4_block6_add (Add)         (None, 14, 14, 1024  0           ['conv4_block5_out[0][0]',       
                                )                                 'conv4_block6_3_bn[0][0]']      
                                                                                                  
 conv4_block6_out (Activation)  (None, 14, 14, 1024  0           ['conv4_block6_add[0][0]']       
                                )                                                                 
                                                                                                  
 conv5_block1_1_conv (Conv2D)   (None, 7, 7, 512)    524800      ['conv4_block6_out[0][0]']       
                                                                                                  
 conv5_block1_1_bn (BatchNormal  (None, 7, 7, 512)   2048        ['conv5_block1_1_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv5_block1_1_relu (Activatio  (None, 7, 7, 512)   0           ['conv5_block1_1_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv5_block1_2_conv (Conv2D)   (None, 7, 7, 512)    2359808     ['conv5_block1_1_relu[0][0]']    
                                                                                                  
 conv5_block1_2_bn (BatchNormal  (None, 7, 7, 512)   2048        ['conv5_block1_2_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv5_block1_2_relu (Activatio  (None, 7, 7, 512)   0           ['conv5_block1_2_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv5_block1_0_conv (Conv2D)   (None, 7, 7, 2048)   2099200     ['conv4_block6_out[0][0]']       
                                                                                                  
 conv5_block1_3_conv (Conv2D)   (None, 7, 7, 2048)   1050624     ['conv5_block1_2_relu[0][0]']    
                                                                                                  
 conv5_block1_0_bn (BatchNormal  (None, 7, 7, 2048)  8192        ['conv5_block1_0_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv5_block1_3_bn (BatchNormal  (None, 7, 7, 2048)  8192        ['conv5_block1_3_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv5_block1_add (Add)         (None, 7, 7, 2048)   0           ['conv5_block1_0_bn[0][0]',      
                                                                  'conv5_block1_3_bn[0][0]']      
                                                                                                  
 conv5_block1_out (Activation)  (None, 7, 7, 2048)   0           ['conv5_block1_add[0][0]']       
                                                                                                  
 conv5_block2_1_conv (Conv2D)   (None, 7, 7, 512)    1049088     ['conv5_block1_out[0][0]']       
                                                                                                  
 conv5_block2_1_bn (BatchNormal  (None, 7, 7, 512)   2048        ['conv5_block2_1_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv5_block2_1_relu (Activatio  (None, 7, 7, 512)   0           ['conv5_block2_1_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv5_block2_2_conv (Conv2D)   (None, 7, 7, 512)    2359808     ['conv5_block2_1_relu[0][0]']    
                                                                                                  
 conv5_block2_2_bn (BatchNormal  (None, 7, 7, 512)   2048        ['conv5_block2_2_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv5_block2_2_relu (Activatio  (None, 7, 7, 512)   0           ['conv5_block2_2_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv5_block2_3_conv (Conv2D)   (None, 7, 7, 2048)   1050624     ['conv5_block2_2_relu[0][0]']    
                                                                                                  
 conv5_block2_3_bn (BatchNormal  (None, 7, 7, 2048)  8192        ['conv5_block2_3_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv5_block2_add (Add)         (None, 7, 7, 2048)   0           ['conv5_block1_out[0][0]',       
                                                                  'conv5_block2_3_bn[0][0]']      
                                                                                                  
 conv5_block2_out (Activation)  (None, 7, 7, 2048)   0           ['conv5_block2_add[0][0]']       
                                                                                                  
 conv5_block3_1_conv (Conv2D)   (None, 7, 7, 512)    1049088     ['conv5_block2_out[0][0]']       
                                                                                                  
 conv5_block3_1_bn (BatchNormal  (None, 7, 7, 512)   2048        ['conv5_block3_1_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv5_block3_1_relu (Activatio  (None, 7, 7, 512)   0           ['conv5_block3_1_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv5_block3_2_conv (Conv2D)   (None, 7, 7, 512)    2359808     ['conv5_block3_1_relu[0][0]']    
                                                                                                  
 conv5_block3_2_bn (BatchNormal  (None, 7, 7, 512)   2048        ['conv5_block3_2_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv5_block3_2_relu (Activatio  (None, 7, 7, 512)   0           ['conv5_block3_2_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv5_block3_3_conv (Conv2D)   (None, 7, 7, 2048)   1050624     ['conv5_block3_2_relu[0][0]']    
                                                                                                  
 conv5_block3_3_bn (BatchNormal  (None, 7, 7, 2048)  8192        ['conv5_block3_3_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv5_block3_add (Add)         (None, 7, 7, 2048)   0           ['conv5_block2_out[0][0]',       
                                                                  'conv5_block3_3_bn[0][0]']      
                                                                                                  
 conv5_block3_out (Activation)  (None, 7, 7, 2048)   0           ['conv5_block3_add[0][0]']       
                                                                                                  
 avg_pool (GlobalAveragePooling  (None, 2048)        0           ['conv5_block3_out[0][0]']       
 2D)                                                                                              
                                                                                                  
 predictions (Dense)            (None, 1000)         2049000     ['avg_pool[0][0]']               
                                                                                                  
==================================================================================================
Total params: 25,636,712
Trainable params: 25,583,592
Non-trainable params: 53,120
__________________________________________________________________________________________________
None
preds = model.predict(x)
1/1 [==============================] - 1s 854ms/step
print('Predicted:', decode_predictions(preds, top=5)[0])
Predicted: [('n02108422', 'bull_mastiff', 0.3921146), ('n02110958', 'pug', 0.2944119), ('n02093754', 'Border_terrier', 0.14356579), ('n02108915', 'French_bulldog', 0.057976846), ('n02099712', 'Labrador_retriever', 0.052499186)]

TensorFlow2.2基本应用

import tensorflow as tf
x=tf.random.normal([2,16])
w1=tf.Variable(tf.random.truncated_normal([16,8],stddev=0.1))
b1=tf.Variable(tf.zeros([8]))
o1=tf.matmul(x,w1)+b1
o1=tf.nn.relu(o1)
o1

<tf.Tensor: id=8263, shape=(2, 8), dtype=float32, numpy=
array([[0.16938789, 0. , 0.08883161, 0.14095941, 0.34751543,
0.353898 , 0. , 0.13356908],
[0. , 0. , 0.48546872, 0.37623546, 0.5447475 ,
0.21755993, 0.40121362, 0. ]], dtype=float32)>

from tensorflow.keras import layers
x=tf.random.normal([4,16*16])
fc=layers.Dense(5,activation=tf.nn.relu)
h1=fc(x)
h1

<tf.Tensor: id=8296, shape=(4, 5), dtype=float32, numpy=
array([[0. , 0. , 0. , 0.14286758, 0. ],
[0. , 2.2727172 , 0. , 0. , 0.34961763],
[0.1311972 , 0. , 1.4005635 , 0. , 0. ],
[0. , 1.7266206 , 0.64711714, 1.3494569 , 0. ]],
dtype=float32)>

#获取权值矩阵w
fc.kernel

<tf.Variable ‘dense/kernel:0’ shape=(256, 5) dtype=float32, numpy=
array([[-0.0339304 , 0.02273461, -0.12746884, 0.14963049, 0.00773269],
[-0.05978647, 0.07886668, -0.09110804, 0.14902723, 0.13007113],
[ 0.10187459, 0.13089484, 0.14367685, 0.12212327, -0.06235344],
…,
[ 0.10417426, 0.05112691, 0.12206474, 0.01141772, -0.05271714],
[ 0.03493455, -0.13473712, -0.01317982, -0.09485313, 0.04731715],
[ 0.12421742, 0.00030141, -0.00211757, -0.04196439, -0.03638943]],
dtype=float32)>

fc.bias

<tf.Variable ‘dense/bias:0’ shape=(5,) dtype=float32, numpy=array([0., 0., 0., 0., 0.], dtype=float32)>

fc.trainable_variables

[<tf.Variable ‘dense/kernel:0’ shape=(256, 5) dtype=float32, numpy=
array([[-0.0339304 , 0.02273461, -0.12746884, 0.14963049, 0.00773269],
[-0.05978647, 0.07886668, -0.09110804, 0.14902723, 0.13007113],
[ 0.10187459, 0.13089484, 0.14367685, 0.12212327, -0.06235344],
…,
[ 0.10417426, 0.05112691, 0.12206474, 0.01141772, -0.05271714],
[ 0.03493455, -0.13473712, -0.01317982, -0.09485313, 0.04731715],
[ 0.12421742, 0.00030141, -0.00211757, -0.04196439, -0.03638943]],
dtype=float32)>,
<tf.Variable ‘dense/bias:0’ shape=(5,) dtype=float32, numpy=array([0., 0., 0., 0., 0.], dtype=float32)>]

fc.variables

[<tf.Variable ‘dense/kernel:0’ shape=(256, 5) dtype=float32, numpy=
array([[-0.0339304 , 0.02273461, -0.12746884, 0.14963049, 0.00773269],
[-0.05978647, 0.07886668, -0.09110804, 0.14902723, 0.13007113],
[ 0.10187459, 0.13089484, 0.14367685, 0.12212327, -0.06235344],
…,
[ 0.10417426, 0.05112691, 0.12206474, 0.01141772, -0.05271714],
[ 0.03493455, -0.13473712, -0.01317982, -0.09485313, 0.04731715],
[ 0.12421742, 0.00030141, -0.00211757, -0.04196439, -0.03638943]],
dtype=float32)>,
<tf.Variable ‘dense/bias:0’ shape=(5,) dtype=float32, numpy=array([0., 0., 0., 0., 0.], dtype=float32)>]

5. 使用深度学习进行手写数字识别

import tensorflow as tf

#载入MNIST 数据集。
mnist = tf.keras.datasets.mnist
#拆分数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()
#将样本进行预处理,并从整数转换为浮点数
x_train, x_test = x_train / 255.0, x_test / 255.0

#使用tf.keras.Sequential将模型的各层堆叠,并设置参数
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(128, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
])
#设置模型的优化器和损失函数
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
#训练并验证模型
model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test,  y_test, verbose=2)
Train on 60000 samples
Epoch 1/5
60000/60000 [==============================] - 6s 95us/sample - loss: 0.2931 - accuracy: 0.9146
Epoch 2/5
60000/60000 [==============================] - 5s 77us/sample - loss: 0.1419 - accuracy: 0.9592
Epoch 3/5
60000/60000 [==============================] - 5s 78us/sample - loss: 0.1065 - accuracy: 0.9683
Epoch 4/5
60000/60000 [==============================] - 5s 78us/sample - loss: 0.0852 - accuracy: 0.9738
Epoch 5/5
60000/60000 [==============================] - 6s 100us/sample - loss: 0.0735 - accuracy: 0.9769
10000/1 - 0s - loss: 0.0338 - accuracy: 0.9795
[0.0666636555833742, 0.9795]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/86055.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

海外ios应用商店优化排名因素之关键词

与Google Play Store相比&#xff0c;在Apple的App Store中&#xff0c;应用描述不会影响关键词排名。不过有一个专门针对App Store的关键词列表&#xff0c;我们可以在其中放置相关关键词。 1、关键词列表的限制仅为100个字符。 使用排名的竞争性较低的关键词&#xff0c;尝试…

HTML-常见标签、HTML5新特性

HTML 软件架构 1.C/S架构 (1) C/S架构即Client/Server&#xff08;客户机/服务器&#xff09;结构。 (2) C/S 架构特点 ​ C/S结构在技术上很成熟&#xff0c;它的主要特点是交互性强、具有安全的存取模式、网络通信量低、响应速度快、利于处理大量数据。但是该结构的程序是…

基于Linux操作系统中的shell脚本

目录 前言 一、概述 1、什么是shell&#xff1f; 2、shell脚本的用途有哪些&#xff1f; 3、常见的shell有哪些&#xff1f; 4、学习shell应该从哪几个方面入手&#xff1f; 4.1、表达式 1&#xff09;变量 2&#xff09;运算符 4.2、语句 1&#xff09;条件语句&am…

odoo安装启动遇到的问题

问题&#xff1a;在第一次加载odoo配置文件的时候&#xff0c;启动失败 方法&#xff1a; 1、先检查odoo.conf的内容&#xff0c;尤其是路径 [options] ; This is the password that allows database operations: ; admin_passwd admin db_host 127.0.0.1 db_port 5432 d…

【LangChain系列 1】 LangChain初探

原文链接&#xff1a;【LangChain系列 1】LangChain初探https://mp.weixin.qq.com/s/9UpbM84LlsHOaMS7cbRfeQ 本文速读&#xff1a; LangChain是什么 LangChain初探 环境准备 LLMs Prompt Templates Output Parser 第一个LLMChain应用 01 LangChain是什么 LangChain是一…

MongoDB快速上手

MongoDB快速上手 MongoDB用起来-快速上手&集群和安全系列 课程目标&#xff1a; 理解MongoDB的业务场景、熟悉MongoDB的简介、特点和体系结构、数据类型等能够在windows和linux下安装和启动MongoDB、图形化管理界面Compass的安装使用掌握MongoDB基本常用命令实现数据的C…

计算机毕业设计源码-基于java+springboot+vue开发的短视频播放系统-lw

参考源码 文章目录 前言一、项目运行环境配置二、主要技术javaMysql数据库JSP技术B/S结构 三、系统设计四、功能截图总结 前言 随着社会的不断发展与进步&#xff0c;21世纪的今天&#xff0c;人们对信息科学的认识已由低层次向高层次发展&#xff0c;从感性认识逐渐提高到理…

17.2 【Linux】通过 systemctl 管理服务

systemd这个启动服务的机制&#xff0c;是通过一支名为systemctl的指令来处理的。跟以前 systemV 需要 service / chkconfig / setup / init 等指令来协助不同&#xff0c; systemd 就是仅有systemctl 这个指令来处理而已。 17.2.1 通过 systemctl 管理单一服务 &#xff08;s…

logstash配置文件

input { kafka { topics > “xxxx” bootstrap_servers > “ip:port” auto_offset_reset > “xxxx” group_id > “xxxx” consumer_threads > 3 codec > “json” } } filter { grok { match > { “message” > ‘%{IP:client_ip} - - [%{HTTPDATE:…

神仙般的css动画参考网址,使用animate.css

Animate.css | A cross-browser library of CSS animations.Animate.css is a library of ready-to-use, cross-browser animations for you to use in your projects. Great for emphasis, home pages, sliders, and attention-guiding hints.https://animate.style/这里面有很…

大语言模型微调实践——LoRA 微调细节

1. 引言 近年来人工智能领域不断进步&#xff0c;大语言模型的崛起引领了自然语言处理的革命。这些参数量巨大的预训练模型&#xff0c;凭借其在大规模数据上学习到的丰富语言表示&#xff0c;为我们带来了前所未有的文本理解和生成能力。然而&#xff0c;要使这些通用模型在特…

全流程R语言Meta分析核心技术应用

Meta分析是针对某一科研问题&#xff0c;根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法&#xff0c;对来源不同的研究成果进行收集、合并及定量统计分析的方法&#xff0c;最早出现于“循证医学”&#xff0c;现已广泛应用于农林生态&#xff0c;资源环境等方面。…

写之前的项目关于使用git remote -v 找不到项目地址的解决方案

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 一、报错解析1. 报错内容2. 报错翻译3. 报错解析&#xff08;1&#xff09;使用git branch来查看git仓库有几个分支&#xff08;2&#xff09;使用git remote -v&am…

商城-学习整理-高级-性能压测缓存问题(十一)

目录 一、基本介绍1、性能指标2、JMeter1、JMeter 安装2、JMeter 压测示例1、添加线程组2、添加 HTTP 请求3、添加监听器4、启动压测&查看分析结果 3、JMeter Address Already in use 错误解决 二、性能监控1、jvm 内存模型2、堆3、jconsole 与 jvisualvm1、jvisualvm 能干…

暴力递归汉诺塔问题

暴力递归 将问题转化为规模缩小了的同类问题的子问题。有明确的不需要继续递归的条件&#xff08;base case&#xff09;有当得到了子问题的结果之后的决策过程不记录每一个子问题的解 暴力递归的要点大致可以分为以上四条&#xff0c;但是总结起来就是一句话&#xff1a;不断…

记录Taro巨坑,找不到sass类型定义文件

问题 taronutuisassts项目里tsconfig.json一直报红报错。 找不到“sass”的类型定义文件。 程序包含该文件是因为: 隐式类型库 “sass” 的入口点 其实正常人想的肯定是装上 types/sass试试。开始我试过了&#xff0c;没用。删了依赖重装也没用。后面在issue中找到答案了 解决…

SpringBoot + Vue 微人事(十二)

职位批量删除实现 编写后端接口 PositionController DeleteMapping("/")public RespBean deletePositionByIds(Integer[] ids){if(positionsService.deletePositionsByIds(ids)ids.length){return RespBean.ok("删除成功");}return RespBean.err("删…

案例-基于MVC和三层架构实现商品表的增删改查

文章目录 0. 项目介绍1. 环境准备2. 查看所有2.1 编写BrandMapper接口2.2 编写服务类&#xff0c;创建BrandService&#xff0c;用于调用该方法2.5 编写Servlet2.4 编写brand.jsp页面2.5 测试 3.添加3.1 编写BrandMapper接口 添加方法3.2 编写服务3.3 改写Brand.jsp页面&#x…

item_search_img-按图搜索淘宝商品(拍立淘)

一、接口参数说明&#xff1a; item_search_img-按图搜索淘宝商品&#xff08;拍立淘&#xff09;&#xff0c;点击更多API调试&#xff0c;请移步注册API账号点击获取测试key和secret 公共参数 请求地址: https://api-gw.onebound.cn/taobao/item_search_img 名称类型必须描…

学Pyhton静不下来,看了一堆资料还是很迷茫是为什么

一、前言 最近发现&#xff0c;身边很多的小伙伴学Python都会遇到一个问题&#xff0c;就是资料也看了很多&#xff0c;也花了很多时间去学习但还是很迷茫&#xff0c;时间长了又发现之前学的知识点很多都忘了&#xff0c;都萌生出了想半路放弃的想法。 让我们看看蚂蚁金服的大…