大语言模型微调实践——LoRA 微调细节

1. 引言

近年来人工智能领域不断进步,大语言模型的崛起引领了自然语言处理的革命。这些参数量巨大的预训练模型,凭借其在大规模数据上学习到的丰富语言表示,为我们带来了前所未有的文本理解和生成能力。然而,要使这些通用模型在特定任务上发挥出色,还需借助微调技术。大语言模型的微调技术已经成为自然语言处理领域的一个焦点,其不断的演化和创新正引领着我们进入一个更加精细、个性化的文本处理时代。

在本文中,我们将选取目前大语言模型热点任务——代码生成,结合 StarCoder 模型微调实践介绍高效微调方法——LoRA。

2. LoRA 微调原理

论文:LoRA: Low-Rank Adaptation of Large Language Models

LoRA 基于大模型的内在低秩特性,增加旁路矩阵来模拟全参数微调,是目前最通用、效果最好的微调方法之一,而且能和其它参数高效微调方法有效结合。利用该方法对 175B GPT-3 微调,需要训练更新的参数量可以小到全量微调参数量的 0.01%。

cc06951f9521a210ce1526d2a28b0830.png

图1. LoRA原理   

上图为 LoRA 的实现原理,其实现流程为:

  1. 在原始预训练语言模型旁边增加一个旁路,做降维再升维的操作来模拟内在秩;

  2. 用随机高斯分布初始化 A,用零矩阵初始化B,训练时固定预训练模型的参数,只训练矩阵 A 与矩阵 B ;

  3. 训练完成后,将 B 矩阵与 A 矩阵相乘后合并预训练模型参数作为微调后的模型参数。

研究表明,Transformer 等神经网络包含许多执行矩阵乘法的密集层,这些权重通常具有满秩。预训练的语言模型具有较低的“本征维度(Instrinsic Dimension)”,并且可以和完整参数空间一样进行有效学习。受此启发,本文在微调过程中假设权重的更新也具有较低的“本征维度”。对于预训练模型的权重矩阵 ,通过低秩分解(Low-Rank Decomposition)来表示约束其更新。训练过程中 被固定不再进行梯度更新,只训练 和 ,其中 。训练结束后,更新参数为 。对于输入 ,模型的前向传播过程更新为 。

由于模型整体参数量不变,所以不会降低推理时的性能。作者通过实验比较了在内容理解任务、生成任务上的效果,相比全量微调参数量显著降低,性能上持平甚至超过,相比其他高效微调方法,增加参数量不会导致性能下降。需要注意的是此方法对低秩矩阵的秩数和目标模块的选择比较敏感,可能影响模型的性能和稳定性。使用LoRA微调有以下几个细节:

  1. 对哪些参数进行微调:基于 Transformer 结构,LoRA 只对每层的 Self-Attention 的部分进行微调,有 四个映射层参数可以进行微调。需要注意不同模型参数名称不同,像 StarCoder 模型 Multi-query 结构的 attention 层对应的参数名称是 attn.c_attn, attn.c_proj

  2. Rank(r) 的选取:Rank 的取值作者对比了 1-64,效果上 Rank 在 4-8 之间最好,再高并没有效果提升。不过论文的实验是面向下游单一监督任务的,因此在指令微调上根据指令分布的广度,Rank选择还是需要在 8 以上的取值进行测试。

  3. alpha 参数选取:alpha 其实是个缩放参数,训练后权重 merge 时的比例为 alpha/r

  4. 初始化:矩阵A是 Uniform 初始化,B 是零初始化,这样最初的 lora 权重为 0,所以 lora 参数是从头学起,并没有那么容易收敛。

3. LoRA 微调实践

本节以 StarCoder 微调为例,介绍使用 LoRA 微调的实践过程。

首先,StarCoder 是使用 86 种编程语言的 1 万亿个 token 训练,并在另外 35billion Python token 上微调出的模型,专注于解决编程问题,模型结构为:"GPTBigCodeForCausalLM",40层      decoder-only Transformer,Attention 层结构为 Multi-query,参数量约 15.5B。

3.1 环境配置

  1. 实例环境:A800 + python3.8 + torch2.0 + CUDA11.6

  2. python环境:主要坑在 transforemrs 和 peft,这两个包建议使用"Development Mode"安装

环境中主要包的版本:

tqdm==4.65.0
transformers=4.31.0.dev0
peft=0.4.0.dev0
datasets==2.11.0
huggingface-hub==0.13.4
accelerate==0.18.0

3.2 模型加载

以下代码主要整合自 alpaca-lora 项目和 StarCoder 的 finetune 项目。其实 LoRA 微调的代码本身并不复杂,但是对于如何加速大模型训练,如何以时间换空间的降低显存占用处理值得学习。模型初始化代码如下,get_peft_model 会初始化 PeftModel 把原模型作为 base 模型,并在各个 self-attention 层加入 LoRA 层,同时改写模型 forward 的计算方式。主要说下 load_in_8bitprepare_model_for_int8_trainingget_peft_model 分别做了哪些操作。

from accelerate import Accelerator
from peft import LoraConfig, get_peft_model, prepare_model_for_int8_training
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, Trainer


model = AutoModelForCausalLM.from_pretrained(
        args.model_path,
        use_auth_token=True,
        use_cache=True,
        load_in_8bit=True,
        device_map={"": Accelerator().process_index},
    )

model = prepare_model_for_int8_training(model)

lora_config = LoraConfig(
    r=16,
    lora_alpha=32,
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM",
    target_modules = ["attn.c_proj", "attn.c_attn"]
)

model = get_peft_model(model, lora_config)

模型加载时,load_in_8bit=True 的 8bit 量化优化的是静态显存,是 bitsandbytes 库赋予的能力,会把加载模型转化成混合 8bit 的量化模型。模型量化本质是对浮点参数进行压缩的同时,降低压缩带来的误差。8bit quantization是把原始 fp32(4字节)压缩到 int8(1字节)也就是 1/4 的显存占用。我们主要关注 attention 层的情况:

Parameter name: transformer.h.0.ln_1.weight
Data type: torch.float16

Parameter name: transformer.h.0.ln_1.bias
Data type: torch.float16

Parameter name: transformer.h.0.attn.c_attn.weight
Data type: torch.int8

Parameter name: transformer.h.0.attn.c_attn.bias
Data type: torch.float16

Parameter name: transformer.h.0.attn.c_proj.weight
Data type: torch.int8

Parameter name: transformer.h.0.attn.c_proj.bias
Data type: torch.float16

通过第一层模型可以看出,这一步,attention 层 c_attn 和 c_proj 的 weight 设为 int8,其他为 fp16。

下面,prepare_model_for_int8_training 是对在 LoRA 微调中使用 LLM.int8() 进行了适配用来提高训练的稳定性,主要包括

  • layer norm 层保留 fp32 精度

  • 输出层保留 fp32 精度保证解码时随机 sample 的差异性

操作后区别如下:

Parameter name: transformer.h.0.ln_1.weight
Data type: torch.float32

Parameter name: transformer.h.0.ln_1.bias
Data type: torch.float32

Parameter name: transformer.h.0.attn.c_attn.weight
Data type: torch.int8

Parameter name: transformer.h.0.attn.c_attn.bias
Data type: torch.float32

Parameter name: transformer.h.0.attn.c_proj.weight
Data type: torch.int8

Parameter name: transformer.h.0.attn.c_proj.bias
Data type: torch.float32

prepare_model_for_int8_training 还设置了 gradient_checkpointing=True,这是一个时间换空间的技巧。gradient checkpoint 的实现是在前向传播的过程中使用 torch.no_grad() 不存储中间激活值,降低动态显存的占用,而只保存输入和激活函数,当进行反向传播的时候,会重新获取输入并计算激活值用于梯度计算。因此前向传播会计算两遍,所以需要更多的训练时间。

第三步 get_peft_model 的操作后,区别如下:

Parameter name: base_model.model.transformer.h.0.attn.c_attn.lora_A.default.weight
Data type: torch.float32
Require grads: True

Parameter name: base_model.model.transformer.h.0.attn.c_attn.lora_B.default.weight
Data type: torch.float32
Require grads: True

Parameter name: base_model.model.transformer.h.0.attn.c_proj.lora_A.default.weight
Data type: torch.float32
Require grads: True

Parameter name: base_model.model.transformer.h.0.attn.c_proj.lora_B.default.weight
Data type: torch.float32
Require grads: True

在 attention 层的 c_attn 和 c_proj 添加 LoRA 层,数据类型为 fp32,并且需要梯度计算。

3.3 模型训练

模型训练的代码如下,和常规训练基本相同,需要注意模型存储和混合精度训练。StarCoder 项目推荐使用的数据集是 stack-exchange-instruction。Stack Exchange 是一个著名的问答网站,涉及不同领域的主题,用户可以在这里提出问题并从其他用户那里获得答案。这些答案根据其质量进行评分和排名。此数据集构建的即为问答对集合。可以在该数据集上微调语言模型,激活模型的问答技能。

train_dataset, eval_dataset = create_datasets(tokenizer, args)

training_args = TrainingArguments(
        output_dir=args.output_dir,
        evaluation_strategy="steps",
        max_steps=args.max_steps,
        eval_steps=100,
        save_steps=100,
        per_device_train_batch_size=1,
        learning_rate=5e-6,
        gradient_accumulation_steps=16,
        fp16=True,
        report_to="wandb",
    )

trainer = Trainer(model=model, args=training_args, train_dataset=train_data, eval_dataset=val_data, callbacks=[SavePeftModelCallback, LoadBestPeftModelCallback)

trainer.train()

model.save_pretrained(os.path.join(args.output_dir, "final_checkpoint/"))

(1)模型存储

需要注意 PeftModel 重写了原始 model 的 save_pretrained 函数,只把 LoRA 层的权重进行存储,因此 model.save_pretrained 只会存储 LoRA 权重。

(2)混合精度训练

实现原理是并非所有变量都需要全精度存储,如果把部分中间变量转化成半精度,则计算效率会大幅提升,加上一些 GPU 对 fp16 计算做了优化,吞吐上比全精度会快 2~5 倍。不过只使用半精度训练会带来量化误差,所以混合精度训练前向传播时,模型权重、激活值和梯度都使用 fp16 进行存储,同时会拷贝一份模型权重以 fp32 存储,反向传播 optimizer 更新时会更新 fp32 的参数。因此其并不会节省内存,只会提高模型训练速度,同时使精度不下降太多。

3.4 merge 权重

LoRA 权重和原始模型权重进行合并,合并后的参数会存储成新的 bin 文件,然后和加载常规模型一样加载合并后的模型参数进行推理,不会引入推理延迟,权重合并关键代码如下:

base_model = AutoModelForCausalLM.from_pretrained(
        args.base_model_name_or_path,
        load_in_8bit=False,
        torch_dtype=torch.float16,
        device_map={"": "cuda:0"},
)
lora_model = PeftModel.from_pretrained(
        base_model,
        args.peft_model_path,
        device_map={"": "cuda:0"},
        torch_dtype=torch.float16,
)

model = lora_model.merge_and_unload()

lora_model.train(False)

tokenizer = AutoTokenizer.from_pretrained(args.base_model_name_or_path)
model.save_pretrained(f"{args.save_model_path}-merged")
tokenizer.save_pretrained(f"{args.save_model_path}-merged")

至此,StarCoder 模型的 LoRA 微调过程就完成了。

3.5 模型推理

下面我们可以看一下激活问答能力后,模型的表现。

问题:Based on the torch framework, please write a handwritten digital processing model.

回答:

Answer: I think you can use the torch.nn.Conv2d module.

import torch
import torch.nn as nn

class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.conv1 = nn.Conv2d(1, 1, 3, padding=1)
        self.conv2 = nn.Conv2d(1, 1, 3, padding=1)

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        return x

model = MyModel()

This is a simple model with two convolutional layers.

input = torch.randn(1, 1, 10, 10)
output = model(input)

This is how you can use it.

通过以上回答,我们可以看到精调后的模型激活了问答能力。

4. 总结

在本文中,我们探讨了 LoRA 微调方法,并以 StarCoder 模型的微调为例介绍了实践过程。通过实践过程的经验来为大家展示一些细节及需要注意的点,希望大家也能通过这种低资源高效微调方法微调出符合自己需求的模型。

参考

[1] LoRA: Low-Rank Adaptation of Large Language Models

[2] https://github.com/bigcode-project/starcoder

[3] https://github.com/tloen/alpaca-lora

[4] 苏剑林,梯度视角下的LoRA:简介、分析、猜测及推广


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/86034.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

全流程R语言Meta分析核心技术应用

Meta分析是针对某一科研问题,根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法,对来源不同的研究成果进行收集、合并及定量统计分析的方法,最早出现于“循证医学”,现已广泛应用于农林生态,资源环境等方面。…

写之前的项目关于使用git remote -v 找不到项目地址的解决方案

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 一、报错解析1. 报错内容2. 报错翻译3. 报错解析(1)使用git branch来查看git仓库有几个分支(2)使用git remote -v&am…

商城-学习整理-高级-性能压测缓存问题(十一)

目录 一、基本介绍1、性能指标2、JMeter1、JMeter 安装2、JMeter 压测示例1、添加线程组2、添加 HTTP 请求3、添加监听器4、启动压测&查看分析结果 3、JMeter Address Already in use 错误解决 二、性能监控1、jvm 内存模型2、堆3、jconsole 与 jvisualvm1、jvisualvm 能干…

暴力递归汉诺塔问题

暴力递归 将问题转化为规模缩小了的同类问题的子问题。有明确的不需要继续递归的条件(base case)有当得到了子问题的结果之后的决策过程不记录每一个子问题的解 暴力递归的要点大致可以分为以上四条,但是总结起来就是一句话:不断…

记录Taro巨坑,找不到sass类型定义文件

问题 taronutuisassts项目里tsconfig.json一直报红报错。 找不到“sass”的类型定义文件。 程序包含该文件是因为: 隐式类型库 “sass” 的入口点 其实正常人想的肯定是装上 types/sass试试。开始我试过了,没用。删了依赖重装也没用。后面在issue中找到答案了 解决…

SpringBoot + Vue 微人事(十二)

职位批量删除实现 编写后端接口 PositionController DeleteMapping("/")public RespBean deletePositionByIds(Integer[] ids){if(positionsService.deletePositionsByIds(ids)ids.length){return RespBean.ok("删除成功");}return RespBean.err("删…

案例-基于MVC和三层架构实现商品表的增删改查

文章目录 0. 项目介绍1. 环境准备2. 查看所有2.1 编写BrandMapper接口2.2 编写服务类,创建BrandService,用于调用该方法2.5 编写Servlet2.4 编写brand.jsp页面2.5 测试 3.添加3.1 编写BrandMapper接口 添加方法3.2 编写服务3.3 改写Brand.jsp页面&#x…

item_search_img-按图搜索淘宝商品(拍立淘)

一、接口参数说明: item_search_img-按图搜索淘宝商品(拍立淘),点击更多API调试,请移步注册API账号点击获取测试key和secret 公共参数 请求地址: https://api-gw.onebound.cn/taobao/item_search_img 名称类型必须描…

学Pyhton静不下来,看了一堆资料还是很迷茫是为什么

一、前言 最近发现,身边很多的小伙伴学Python都会遇到一个问题,就是资料也看了很多,也花了很多时间去学习但还是很迷茫,时间长了又发现之前学的知识点很多都忘了,都萌生出了想半路放弃的想法。 让我们看看蚂蚁金服的大…

Elasticsearch(十三)搜索---搜索匹配功能④--Constant Score查询、Function Score查询

一、前言 之前我们学习了布尔查询,知道了filter查询只在乎查询条件和文档的匹配程度,但不会根据匹配程度对文档进行打分,而对于must、should这两个布尔查询会对文档进行打分,那如果我想在查询的时候同时不去在乎文档的打分&#…

01_Redis单线程与多线程

01——Redis单线程与多线程 一、Redis是单线程还是多线程 在谈Redis的单线程或多线程时,需要根据版本来区分。 在redis 3.x之前,redis是单线程的从redis 4.x开始,redis引入多线程。处理客户端请求时,使用单线程;在异…

Android app 打包发布之build.gradle 配置

配置描述:在build.gradle(:app)文件中配置 包含以下几个部分: plugins:引入的工具android:主要配置都在这个里面dependencies:依赖android.applicationVariants.all:打包输出路径和名称 看android配置&a…

基于Spring Boot的餐厅订餐网站的设计与实现(Java+spring boot+MySQL)

获取源码或者论文请私信博主 演示视频: 基于Spring Boot的餐厅订餐网站的设计与实现(Javaspring bootMySQL) 使用技术: 前端:html css javascript jQuery ajax thymeleaf 微信小程序 后端:Java springbo…

稳定扩散ControlNet v1.1 权威指南

ControlNet 是一种稳定扩散模型,可让你从参考图像中复制构图或人体姿势。 经验丰富的稳定扩散用户知道生成想要的确切成分有多难。图像有点随机。你所能做的就是玩数字游戏:生成大量图像并选择你喜欢的图片。 借助 ControlNet,稳定扩散用户…

0基础入门代码审计-2 Fortify初探

0x01 序言 目前又加入一位新童鞋了,最近将会再加入cs相关的专栏,都是以基础为主,毕竟太复杂的东西,能看懂的人太少。 0x02 准备工具 1、Fortify 2、需要审计的源码 0x03 Fortify的简单使用 1、 1、在开始菜单栏中找到Audit Wo…

3D WEB轻量化引擎HOOPS产品助力NAPA打造船舶设计软件平台

NAPA(Naval Architectural PAckage,船舶建筑包),来自芬兰的船舶设计软件供应商,致力于提供世界领先的船舶设计、安全及运营的解决方案和数据分析服务。NAPA拥有超过30年的船舶设计经验,年营业额超过2560万欧…

算法基础(1):排序和查找算法

1、排序算法 1.1、堆排序(大顶堆)-重点: 参考文章:堆排序1、堆排序二 前置知识: 大顶堆:完全二叉树,且父节点大于左右儿子,左右子树又是大顶堆,依赖数组来实现(vector)第一个节点的父节点&…

视频汇聚平台EasyCVR安防视频监控平台新增角色权限功能分配的具体操作步骤

视频集中存储/云存储/安防视频监控/视频汇聚平台EasyCVR可拓展性强、视频能力灵活、部署轻快,可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等,以及支持厂家私有协议与SDK接入,包括海康Ehome、海大宇等设备的SDK等。 EasyCVR视频集中…

python连接PostgreSQL 数据库

执行如下命令安装 pip3 install psycopg2 python代码 Author: tkhywang 2810248865qq.com Date: 2023-08-21 11:42:17 LastEditors: tkhywang 2810248865qq.com LastEditTime: 2023-08-21 11:51:56 FilePath: \PythonProject02\PostgreSQL 数据库.py Description: 这是默认设置…

想解锁禁用的iPhone?除了可以使用电脑之外,这里还有不需要电脑的方法!

多次输入错误的密码后,iPhone将显示“iPhone已禁用”。这种情况看起来很棘手,因为你现在不能用iPhone做任何事情。对于这种情况,我们提供了几种有效的方法来帮助你在最棘手的问题中解锁禁用的iPhone。你可以选择使用或不使用电脑来解锁禁用的iPhone。 一、为什么你的iPhone…