Meta分析是针对某一科研问题,根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法,对来源不同的研究成果进行收集、合并及定量统计分析的方法,最早出现于“循证医学”,现已广泛应用于农林生态,资源环境等方面。R语言拥有完整有效的数据处理、统计分析与保存机制,可以对数据直接进行分析和显示,命令格式简单、结果可读性强,包含众多针对Meta分析软件包,是进行Meta整合分析及评价的有效平台。从文献计量分析研究热点变化,寻找科学问题、R-Meta多手段全流程分析与Meta高级绘图、多层次分层嵌套模型构建与Meta回归诊断、贝叶斯网络、MCMC参数优化及不确定性分析、Meta数据缺失值处理的六种方法与结果可靠性分析、Meta加权机器学习与非线性Meta分析等方面讲解,每个专题,每一部分结合多个典型案例实践,深受众多学员好评。
点击查看原文https://mp.weixin.qq.com/s?__biz=Mzg2NDYxNjMyNA==&mid=2247542347&idx=2&sn=53542950c873477ce13c00cf101a9180&chksm=ce64cca0f91345b69320df320e015a03e1f86ff3f3482b553f329cb1e76bb00181ad87ff5e7e&token=1639767299&lang=zh_CN#rd
专题一
Meta分析的选题与检索
1、Meta分析的选题与文献检索
- 什么是Meta分析
- Meta分析的选题策略
- 精确检索策略,如何检索全、检索准
- 文献的管理与清洗,如何制定文献纳入排除标准
- 文献数据获取技巧,研究课题探索及科学问题的提出
- 文献计量分析CiteSpace、VOSViewer、R bibliometrix及研究热点分析
专题二
Meta分析与R语言基础
2、Meta分析的常用软件/R语言基础及统计学基础
- R语言做Meta分析的优势及其《Nature》、《Science》经典案例应用
- R语言基本操作与数据清洗方法
- 统计学基础和常用统计量计算(sd\se\CI)、三大检验(T检验、卡方检验和F检验)
- R语言Meta分析常用包及相关插件介绍与安装
从自编程计算到调用Meta包(meta、metafor、dmetar、esc、metasens、metamisc、meta4diag、gemtc、robvis、netmeta、brms等),全程分析如何进行meta计算、meta诊断、贝叶斯meta、网状meta、亚组分析、meta回归及作图。
专题三
R语言Meta分析与作图
3、R语言Meta效应值计算
- R语言Meta分析的流程
- 各类meta效应值计算、自编程序和调用函数的对比
连续资料的RR、MD与SMD
分类资料的RR和OR
3.R语言meta包和metafor包的使用
4.如何用R基础包和ggplot2绘制漂亮的森林图
专题四
R语言Meta回归分析
4、R语言Meta分析与混合效应模型构建
- Meta分析的权重计算
- Meta分析中的固定效应、随机效应
- 如何对Meta模型进行统计检验和构建嵌套模型、分层模型(混合效应)
- Meta回归和普通回归、混合效应模型的对比及结果分析
- 使用Rbase和ggplot2绘制Meta回归图
专题五
R语言Meta诊断分析
5、R语言Meta诊断进阶
- Meta诊断分析(t2、I2、H2、R2、Q、QE、QM等统计量)
- 异质性检验及发表偏移、漏斗图、雷达图、发表偏移统计检验
- 敏感性分析、留一法、增一法、Gosh图
- 风险分析、失安全系数计算
- Meta模型比较和模型的可靠性评价
- Bootstrap重采样方法评估模型的不确定性
- 如何使用多种方法对文献中的SD、样本量等缺失值的处理
专题六
R语言Meta分析的不确定性
6、R语言Meta分析的不确定性
- 网状Meta分析
- 贝叶斯理论和蒙特拉罗马尔可夫链MCMC
- 如何使用MCMC优化普通回归模型和Meta模型参数
- R语言贝叶斯工具Stan、JAGS和brms
- 贝叶斯Meta分析及不确定性分析
专题七
机器学习在Meta分析中的应用
7、机器学习在Meta分析中的应用
- 机器学习基础以及Meta机器学习的优势
- Meta加权随机森林(MetaForest)的使用
- 使用Meta机器学习和传统机器学习对文献中的大数据训练与测试
- 如何判断Meta机器学习使用随机效应还是固定效应以及超参数的优化
- 使用Meta机器学习进行驱动因子分析、偏独立分析PDP
专题八
讨论与答疑
1、练习
2、讨论与答疑