2023国赛数学建模思路 - 案例:ID3-决策树分类算法

文章目录

  • 0 赛题思路
    • 1 算法介绍
    • 2 FP树表示法
    • 3 构建FP树
    • 4 实现代码
  • 建模资料

0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 算法介绍

FP-Tree算法全称是FrequentPattern Tree算法,就是频繁模式树算法,他与Apriori算法一样也是用来挖掘频繁项集的,不过不同的是,FP-Tree算法是Apriori算法的优化处理,他解决了Apriori算法在过程中会产生大量的候选集的问题,而FP-Tree算法则是发现频繁模式而不产生候选集。但是频繁模式挖掘出来后,产生关联规则的步骤还是和Apriori是一样的。

常见的挖掘频繁项集算法有两类,一类是Apriori算法,另一类是FP-growth。Apriori通过不断的构造候选集、筛选候选集挖掘出频繁项集,需要多次扫描原始数据,当原始数据较大时,磁盘I/O次数太多,效率比较低下。FPGrowth不同于Apriori的“试探”策略,算法只需扫描原始数据两遍,通过FP-tree数据结构对原始数据进行压缩,效率较高。

FP代表频繁模式(Frequent Pattern) ,算法主要分为两个步骤:FP-tree构建、挖掘频繁项集。

2 FP树表示法

FP树通过逐个读入事务,并把事务映射到FP树中的一条路径来构造。由于不同的事务可能会有若干个相同的项,因此它们的路径可能部分重叠。路径相互重叠越多,使用FP树结构获得的压缩效果越好;如果FP树足够小,能够存放在内存中,就可以直接从这个内存中的结构提取频繁项集,而不必重复地扫描存放在硬盘上的数据。

一颗FP树如下图所示:
  在这里插入图片描述
通常,FP树的大小比未压缩的数据小,因为数据的事务常常共享一些共同项,在最好的情况下,所有的事务都具有相同的项集,FP树只包含一条节点路径;当每个事务都具有唯一项集时,导致最坏情况发生,由于事务不包含任何共同项,FP树的大小实际上与原数据的大小一样。

FP树的根节点用φ表示,其余节点包括一个数据项和该数据项在本路径上的支持度;每条路径都是一条训练数据中满足最小支持度的数据项集;FP树还将所有相同项连接成链表,上图中用蓝色连线表示。

为了快速访问树中的相同项,还需要维护一个连接具有相同项的节点的指针列表(headTable),每个列表元素包括:数据项、该项的全局最小支持度、指向FP树中该项链表的表头的指针。
  在这里插入图片描述

3 构建FP树

现在有如下数据:

在这里插入图片描述

FP-growth算法需要对原始训练集扫描两遍以构建FP树。

第一次扫描,过滤掉所有不满足最小支持度的项;对于满足最小支持度的项,按照全局最小支持度排序,在此基础上,为了处理方便,也可以按照项的关键字再次排序。
在这里插入图片描述

第二次扫描,构造FP树。

参与扫描的是过滤后的数据,如果某个数据项是第一次遇到,则创建该节点,并在headTable中添加一个指向该节点的指针;否则按路径找到该项对应的节点,修改节点信息。具体过程如下所示:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
 从上面可以看出,headTable并不是随着FPTree一起创建,而是在第一次扫描时就已经创建完毕,在创建FPTree时只需要将指针指向相应节点即可。从事务004开始,需要创建节点间的连接,使不同路径上的相同项连接成链表。

4 实现代码

def loadSimpDat():
    simpDat = [['r', 'z', 'h', 'j', 'p'],
               ['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],
               ['z'],
               ['r', 'x', 'n', 'o', 's'],
               ['y', 'r', 'x', 'z', 'q', 't', 'p'],
               ['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]
    return simpDat

def createInitSet(dataSet):
    retDict = {}
    for trans in dataSet:
        fset = frozenset(trans)
        retDict.setdefault(fset, 0)
        retDict[fset] += 1
    return retDict

class treeNode:
    def __init__(self, nameValue, numOccur, parentNode):
        self.name = nameValue
        self.count = numOccur
        self.nodeLink = None
        self.parent = parentNode
        self.children = {}

    def inc(self, numOccur):
        self.count += numOccur

    def disp(self, ind=1):
        print('   ' * ind, self.name, ' ', self.count)
        for child in self.children.values():
            child.disp(ind + 1)


def createTree(dataSet, minSup=1):
    headerTable = {}
    #此一次遍历数据集, 记录每个数据项的支持度
    for trans in dataSet:
        for item in trans:
            headerTable[item] = headerTable.get(item, 0) + 1

    #根据最小支持度过滤
    lessThanMinsup = list(filter(lambda k:headerTable[k] < minSup, headerTable.keys()))
    for k in lessThanMinsup: del(headerTable[k])

    freqItemSet = set(headerTable.keys())
    #如果所有数据都不满足最小支持度,返回None, None
    if len(freqItemSet) == 0:
        return None, None

    for k in headerTable:
        headerTable[k] = [headerTable[k], None]

    retTree = treeNode('φ', 1, None)
    #第二次遍历数据集,构建fp-tree
    for tranSet, count in dataSet.items():
        #根据最小支持度处理一条训练样本,key:样本中的一个样例,value:该样例的的全局支持度
        localD = {}
        for item in tranSet:
            if item in freqItemSet:
                localD[item] = headerTable[item][0]

        if len(localD) > 0:
            #根据全局频繁项对每个事务中的数据进行排序,等价于 order by p[1] desc, p[0] desc
            orderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: (p[1],p[0]), reverse=True)]
            updateTree(orderedItems, retTree, headerTable, count)
    return retTree, headerTable


def updateTree(items, inTree, headerTable, count):
    if items[0] in inTree.children:  # check if orderedItems[0] in retTree.children
        inTree.children[items[0]].inc(count)  # incrament count
    else:  # add items[0] to inTree.children
        inTree.children[items[0]] = treeNode(items[0], count, inTree)
        if headerTable[items[0]][1] == None:  # update header table
            headerTable[items[0]][1] = inTree.children[items[0]]
        else:
            updateHeader(headerTable[items[0]][1], inTree.children[items[0]])

    if len(items) > 1:  # call updateTree() with remaining ordered items
        updateTree(items[1:], inTree.children[items[0]], headerTable, count)


def updateHeader(nodeToTest, targetNode):  # this version does not use recursion
    while (nodeToTest.nodeLink != None):  # Do not use recursion to traverse a linked list!
        nodeToTest = nodeToTest.nodeLink
    nodeToTest.nodeLink = targetNode

simpDat = loadSimpDat()
dictDat = createInitSet(simpDat)
myFPTree,myheader = createTree(dictDat, 3)
myFPTree.disp()

上面的代码在第一次扫描后并没有将每条训练数据过滤后的项排序,而是将排序放在了第二次扫描时,这可以简化代码的复杂度。

控制台信息:

在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/80553.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Mybatis的SqlSource SqlNode BoundSql

学习链接 MyBatis SqlSource解析 【Mybatis】Mybatis源码之SqlSource#getBoundSql获取预编译SQL Mybatis中SqlSource解析流程详解 Mybatis TypeHandler解析 图解 Mybatis的SqlSource&SqlNode - processon DynamicSqlSource public class DynamicSqlSource implement…

Java SpringBoot Vue ERP系统

系统介绍 该ERP系统基于SpringBoot框架和SaaS模式&#xff0c;支持多租户&#xff0c;专注进销存财务生产功能。主要模块有零售管理、采购管理、销售管理、仓库管理、财务管理、报表查询、系统管理等。支持预付款、收入支出、仓库调拨、组装拆卸、订单等特色功能。拥有商品库存…

WebGL和OpenGL之间的差异

推荐&#xff1a;使用 NSDT场景编辑器助你快速搭建可二次编辑的3D应用场景 WebGL和OpenGL是与图形处理有关的技术标准&#xff0c;它们在计算机图形中扮演着重要的角色。本文将介绍WebGL和OpenGL的区别&#xff0c;并重点介绍"WebGL"和"OpenGL"的特点。 一…

《算法竞赛·快冲300题》每日一题:“糖果配对”

《算法竞赛快冲300题》将于2024年出版&#xff0c;是《算法竞赛》的辅助练习册。 所有题目放在自建的OJ New Online Judge。 用C/C、Java、Python三种语言给出代码&#xff0c;以中低档题为主&#xff0c;适合入门、进阶。 文章目录 题目描述题解C代码Java代码Python代码 “ 糖…

docker的网络模式

docker0网络 docker容器的 虚拟网关loopback &#xff1a;回环网卡、TCP/IP网卡是否生效virtual bridge&#xff1a;linux 自身继承了一个虚拟化功能&#xff08;kvm架构&#xff09;&#xff0c;是原生架构的一个虚拟化平台&#xff0c;安装了一个虚拟化平台之后就会系统就会自…

excel入门

上下左右移动 enter:换行&#xff0c;向下移动 shiftenter:向上移动 tab:向右移动 shifttab:向左移动 合并居中操作 开始-》合并居中 CtrlM 内容过长盖过了下一个单元格内容 双击列与列之间线 同时修改多行或者多列宽度或者高度 修改单行高度宽度 选中某一行拉取指定高…

电脑提示msvcp140.dll丢失的解决方法,dll组件怎么处理

Windows系统有时在打开游戏或者软件时&#xff0c; 系统会弹窗提示缺少“msvcp140.dll.dll”文件 或者类似错误提示怎么办&#xff1f; 错误背景&#xff1a; msvcp140.dll是Microsoft Visual C Redistributable Package中的一个动态链接库文件&#xff0c;它在运行软件时提…

调整数组使奇数全部都位于偶数前面

题目内容&#xff1a; 输入一个整数数组&#xff0c;实现一个函数&#xff0c; 来调整该数组中数字的顺序使得数组中所有的奇数位于数组的前半部分&#xff0c; 所有偶数位于数组的后半部分。 题目思路&#xff1a; 将奇数部分放在前半部分&#xff0c;偶数部分放在后半部分&am…

【24择校指南】齐鲁工业大学计算机考研考情分析

齐鲁工业大学 考研难度&#xff08;☆&#xff09; 内容&#xff1a;23考情概况&#xff08;拟录取和复试分析&#xff09;、院校概况、23专业目录、23复试详情、各专业考情分析、各科目考情分析。 正文1140字&#xff0c;预计阅读&#xff1a;3分钟。 2023考情概况 齐鲁工…

VB6编程IEEE浮点算法实践

纯代码实现浮点计算实际上对浮点算法的再实践。IEEE浮点表示法是Modbus RTU协议至今还在用的传送编码&#xff0c;更是WITS 1记录标准的基础。以往实现 MKI、CVI&#xff0c;MKL、CVL&#xff0c;MKS、CVS&#xff0c;MKD、CVD在高级语言里封装了现成的语句&#xff0c;现在Pow…

SCF金融公链新加坡启动会 链结创新驱动未来

新加坡迎来一场引人瞩目的金融科技盛会&#xff0c;SCF金融公链启动会于2023年8月13日盛大举行。这一受瞩目的活动将为金融科技领域注入新的活力&#xff0c;并为广大投资者、合作伙伴以及关注区块链发展的人士提供一个难得的交流平台。 在SCF金融公链启动会上&#xff0c; Wil…

相机的位姿在地固坐标系ECEF和ENU坐标系的转换

在地球科学和导航领域&#xff0c;通常使用地心地固坐标系&#xff08;ECEF&#xff0c;Earth-Centered, Earth-Fixed&#xff09;和东北天坐标系&#xff08;ENU&#xff0c;East-North-Up&#xff09;来描述地球上的位置和姿态。如下图所示&#xff1a; ​地心地固坐标ecef和…

什么是B+树?

B树 B树是B树的一种变体&#xff0c;也属于平衡多路查找树&#xff0c;大体结构与B树相同&#xff0c;包含根节点、内部节点和叶子节点。多用于数据库和操作系统的文件系统中&#xff0c;由于B树内部节点不保存数据&#xff0c;所以能在内存中存放更多索引&#xff0c;增加缓存…

R语言实现免疫浸润分析(2)

原始数据承接免疫浸润分析&#xff08;1&#xff09;&#xff0c;下面展示免疫浸润结果&#xff1a; #直接使用IOBR包内的cell_bar_plot pic<-cell_bar_plot(input quantiseq_immo_de[1:20,], title "quanTiseq Cell Fraction") #使用ggplot2 library(ggplot2)…

NLP文本匹配任务Text Matching [有监督训练]:PointWise(单塔)、DSSM(双塔)、Sentence BERT(双塔)项目实践

NLP文本匹配任务Text Matching [有监督训练]&#xff1a;PointWise&#xff08;单塔&#xff09;、DSSM&#xff08;双塔&#xff09;、Sentence BERT&#xff08;双塔&#xff09;项目实践 0 背景介绍以及相关概念 本项目对3种常用的文本匹配的方法进行实现&#xff1a;Poin…

【游戏评测】河洛群侠传一周目玩后感

总游戏时长接近100小时&#xff0c;刚好一个月。 这两天费了点劲做了些成就&#xff0c;刷了等级&#xff0c;把最终决战做了。 总体感觉还是不错的。游戏是开放世界3D游戏&#xff0c;Unity引擎&#xff0c;瑕疵很多&#xff0c;但胜在剧情扎实&#xff0c;天赋系统、秘籍功法…

不花一分钱,利用免费电脑软件将视频MV变成歌曲音频MP3

教程 1.点击下载电脑软件下载地址&#xff0c;点击下载&#xff0c;安装。&#xff08;没有利益关系&#xff0c;没有打广告&#xff0c;只是单纯教学&#xff09; 2.安装完成后&#xff0c;点击格式工厂 3.然后如图所示依次&#xff0c;点击【音频】->【-MP3】 3.然后点击…

简单记录牛客top101算法题(初级题C语言实现)BM24 二叉树的中序遍历 BM28 二叉树的最大深度 BM29 二叉树中和为某一值的路径

1. BM24 二叉树的中序/后续遍历 要求&#xff1a;给定一个二叉树的根节点root&#xff0c;返回它的中序遍历结果。                          输入&#xff1a;{1,2,#,#,3} 返回值&#xff1a;[2,3,1]1.1 自己的整体思路&#xff08;与二叉树的前序遍…

Java教程:如何使用切面环绕方法对所有接口进行添加出入参日志保存功能

背景&#xff1a; ----在很多时候我们做开发时&#xff0c;往往只是提供一个对外接口来进行前后端调试&#xff0c;或第三方系统联调&#xff0c;并使用log进行日志打印&#xff0c;每当出现问题进行排查时&#xff0c;只需要查看服务器日志就可以定位到问题&#xff0c;从而解…

[Raspberry Pi]如何用VNC遠端控制樹莓派(Ubuntu desktop 23.04)?

之前曾利用VMware探索CentOS&#xff0c;熟悉Linux操作系統的指令和配置運作方式&#xff0c;後來在樹莓派價格飛漲的時期&#xff0c;遇到貴人贈送Raspberry Pi 4 model B / 8GB&#xff0c;這下工具到位了&#xff0c;索性跳過樹莓派官方系統(Raspberry Pi OS)&#xff0c;直…