什么是B+树?

B+树

B+树是B树的一种变体,也属于平衡多路查找树,大体结构与B树相同,包含根节点、内部节点和叶子节点。多用于数据库和操作系统的文件系统中,由于B+树内部节点不保存数据,所以能在内存中存放更多索引,增加缓存命中率。另外因为叶子节点相连遍历操作很方便,而且数据也具有顺序性,便于区间查找。

B+树特点

  • B+树可以定义一个m值作为预定范围,即m路(阶)B+树。
  • 根节点可能是叶子节点,也可能是包含两个或两个以上子节点的节点。
  • 内部节点如果拥有k个关键字则有k+1个子节点。
  • 非叶子节点不保存数据,只保存关键字用作索引,所有数据都保存在叶子节点中。
  • 非叶子节点有若干子树指针,如果非叶子节点关键字为k1,k2,…kn,其中n=m-1,那么第一个子树关键字判断条件为小于k1,第二个为大于等于k1而小于k2,以此类推,最后一个为大于等于kn,总共可以划分出m个区间,即可以有m个分支。(判断条件其实没有严格的要求,只要能实现对B+树的数据进行定位划分即可,有些实现使用了m个关键字来划分区间,也是可以的)
  • 所有叶子节点通过指针链相连,且叶子节点本身按关键字的大小从小到大顺序排列。
  • 自然插入而不进行删除操作时,叶子节点项的个数范围为[floor(m/2),m-1],内部节点项的个数范围为[ceil(m/2)-1,m-1]。
  • 另外通常B+树有两个头指针,一个指向根节点一个指向关键字最小的叶子节点。
  • 在进行删除操作时,涉及到索引节点填充因子和叶子节点填充因子,一般可设叶子节点和索引节点的填充因子都不少于50%。

以下是一棵4阶B+树,
在这里插入图片描述

插入操作

假设现在构建一棵四阶B+树,开始插入“A”,直接作为根节点,

在这里插入图片描述
插入“B”,大于“A”,放右边,
在这里插入图片描述
插入“C”,按顺序排到最后,
在这里插入图片描述
继续插入“D”,直接添加的结果如下图,此时超过了节点可以存放容量,对于四阶B+树每个节点最多存放3个项,此时需要执行分裂操作,
在这里插入图片描述
分裂操作为,先选取待分裂节点中间位置的项,这里选“C”,然后将“C”项放到父节点中,因为这里还没有父节点,那么直接创建一个新的父节点存放“C”,而原来小于“C”的那些项作为左子树,原来大于等于“C”的那些项作为右子树。这里注意下非叶子节点存放的都是关键字,用作索引的,所以父节点存放的“C”项不包括数据,数据仍然存放在右子树。此外,还需要添加一个指针,由左子树指向右子树。
在这里插入图片描述
继续插入“M”,“M”大于“C”,往右子节点,
在这里插入图片描述
分别与“C”“D”比较,大于它们,放到最右边,
在这里插入图片描述
插入“L”,“L”大于“B”,往右子树,
在这里插入图片描述
“L”逐一与节点内项的值比较,根据大小放到指定位置,此时触发分裂操作,
在这里插入图片描述
选取待分裂节点中间位置的项“L”,然后将“L”项放到父节点中,按大小顺序将“L”放到指定位置,而原来小于“L”的那些项作为左子树,原来大于等于“L”的那些项作为右子树。父节点存放的“L”项不包括数据,数据仍然存放在右子树。此外,还需要在左子树中添加一个指向右子树的指针。

在这里插入图片描述
继续插入“K”,从根节点开始查找,逐一比较关键字,“K”大于“C”而小于“L”,往第二个分支,
在这里插入图片描述
在子节点中逐一比较,“K”最终落在最右边,
在这里插入图片描述
继续插入“J”,从根节点开始查找,逐一比较关键字,“J”大于“C”而小于“L”,往第二个分支,
在这里插入图片描述
在子节点中找到“J”的相应位置,此时超过了节点的容量,需要进行分裂操作,
在这里插入图片描述
选取待分裂节点中间位置的项“J”,然后将“J”项放到父节点中,按大小顺序将“J”放到指定位置,而原来小于“J”的那些项作为左子树,原来大于等于“J”的那些项作为右子树。父节点存放的“J”项不包括数据,数据仍然存放在右子树。此外,还需要在左子树中添加一个指向右子树的指针。

在这里插入图片描述
继续插入“I”,从根节点开始查找,逐一比较关键字,“I”大于“C”而小于“J”“L”,往第二个分支,
在这里插入图片描述
逐一比较找到“I”的插入位置,
在这里插入图片描述
继续插入“H”,从根节点开始查找,逐一比较关键字,“H”大于“C”而小于“J”“L”,往第二个分支,
在这里插入图片描述
“H”逐一与节点内的值比较,根据大小放到指定位置,此时触发分裂操作,
在这里插入图片描述
选取待分裂节点中间位置的项“H”,然后将“H”项放到父节点中,按大小顺序将“H”放到指定位置,而原来小于“H”的那些项作为左子树,原来大于等于“H”的那些项作为右子树。父节点存放的“H”项不包括数据,数据仍然存放在右子树。此外,还需要在左子树中添加一个指向右子树的指针。

但此时父节点超出了容量,父节点需要继续分裂操作,
在这里插入图片描述
选取待分裂节点中间位置的项“J”,然后将“J”项放到父节点中,但还不存在父节点,需要创建一个作为父节点。原来小于“J”的那些项作为左子树,原来大于“J”的那些项作为右子树。这是非叶子节点的分裂,操作对象都是用作索引的关键字,不必考虑数据存放问题。
在这里插入图片描述
插入“G”,从根节点开始查找,“G”小于“J”,往第一个分支,
在这里插入图片描述
逐一比较节点内项的值,“G”大于“C”小于“H”,往第二个分支,
在这里插入图片描述
逐一比较节点内项的值,找到“G”的位置并插入,
在这里插入图片描述
插入“F”,从根节点开始查找,“F”小于“J”,往第一个分支,
在这里插入图片描述

逐一比较节点内项的值,“F”大于“C”小于“H”,往第二个分支,
在这里插入图片描述
逐一比较节点内项的值,找到“F”的位置并插入,此时触发分裂操作,
在这里插入图片描述
选取待分裂节点中间位置的项“F”,然后将“F”项放到父节点中,按大小顺序将“F”放到指定位置,而原来小于“F”的那些项作为左子树,原来大于等于“F”的那些项作为右子树。父节点存放的“F”项不包括数据,数据仍然存放在右子树。此外,还需要在左子树中添加一个指向右子树的指针。
在这里插入图片描述
最后插入“E”,从根节点开始查找,“E”小于“J”,往第一个分支,
在这里插入图片描述
逐一比较节点内项的值,“E”大于“C”小于“F”,往第二个分支,
在这里插入图片描述
逐一比较节点内项的值,找打“E”适当的位置并插入。
在这里插入图片描述
从上面插入操作可以总结,插入主要就是涉及到分裂操作,而且要注意到非节点只保存了关键字作为索引,而数据都保存在叶子节点上,此外还需要使用指针将叶子节点连接起来。最终我们可以看到叶子节点的项按从小到大排列,因为有了指针使得可以很方便遍历数据。

查找操作

对B+树的查找与B树的查找差不多,从根节点开始查找,通过比较项的值找到对应的分支,然后继续往子树上查找。

比如查找“H”,“H”小于“J”,往第一个分支,
在这里插入图片描述
逐一比较节点中的项,发现应该往第四个分支,
在这里插入图片描述
逐一比较,找到“H”。
在这里插入图片描述

遍历操作

遍历操作首先是要先找到树最左边的叶子节点,然后就可以通过指针完成整棵树的遍历了。

从根节点开始,一直往第一个分支走,
在这里插入图片描述
继续往第一个分支走,
在这里插入图片描述
第一个叶子节点有两个项,接着根据指针跳到第二个叶子节点,
在这里插入图片描述
第二个节点有三个项,根据指针继续往下一个节点,
在这里插入图片描述
该节点有两个项,根据指针继续往下一个节点,
在这里插入图片描述
不断根据指针往下,
在这里插入图片描述
往下,
在这里插入图片描述

完成整棵树的遍历。
在这里插入图片描述
 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/80532.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

R语言实现免疫浸润分析(2)

原始数据承接免疫浸润分析&#xff08;1&#xff09;&#xff0c;下面展示免疫浸润结果&#xff1a; #直接使用IOBR包内的cell_bar_plot pic<-cell_bar_plot(input quantiseq_immo_de[1:20,], title "quanTiseq Cell Fraction") #使用ggplot2 library(ggplot2)…

NLP文本匹配任务Text Matching [有监督训练]:PointWise(单塔)、DSSM(双塔)、Sentence BERT(双塔)项目实践

NLP文本匹配任务Text Matching [有监督训练]&#xff1a;PointWise&#xff08;单塔&#xff09;、DSSM&#xff08;双塔&#xff09;、Sentence BERT&#xff08;双塔&#xff09;项目实践 0 背景介绍以及相关概念 本项目对3种常用的文本匹配的方法进行实现&#xff1a;Poin…

【游戏评测】河洛群侠传一周目玩后感

总游戏时长接近100小时&#xff0c;刚好一个月。 这两天费了点劲做了些成就&#xff0c;刷了等级&#xff0c;把最终决战做了。 总体感觉还是不错的。游戏是开放世界3D游戏&#xff0c;Unity引擎&#xff0c;瑕疵很多&#xff0c;但胜在剧情扎实&#xff0c;天赋系统、秘籍功法…

不花一分钱,利用免费电脑软件将视频MV变成歌曲音频MP3

教程 1.点击下载电脑软件下载地址&#xff0c;点击下载&#xff0c;安装。&#xff08;没有利益关系&#xff0c;没有打广告&#xff0c;只是单纯教学&#xff09; 2.安装完成后&#xff0c;点击格式工厂 3.然后如图所示依次&#xff0c;点击【音频】->【-MP3】 3.然后点击…

简单记录牛客top101算法题(初级题C语言实现)BM24 二叉树的中序遍历 BM28 二叉树的最大深度 BM29 二叉树中和为某一值的路径

1. BM24 二叉树的中序/后续遍历 要求&#xff1a;给定一个二叉树的根节点root&#xff0c;返回它的中序遍历结果。                          输入&#xff1a;{1,2,#,#,3} 返回值&#xff1a;[2,3,1]1.1 自己的整体思路&#xff08;与二叉树的前序遍…

Java教程:如何使用切面环绕方法对所有接口进行添加出入参日志保存功能

背景&#xff1a; ----在很多时候我们做开发时&#xff0c;往往只是提供一个对外接口来进行前后端调试&#xff0c;或第三方系统联调&#xff0c;并使用log进行日志打印&#xff0c;每当出现问题进行排查时&#xff0c;只需要查看服务器日志就可以定位到问题&#xff0c;从而解…

[Raspberry Pi]如何用VNC遠端控制樹莓派(Ubuntu desktop 23.04)?

之前曾利用VMware探索CentOS&#xff0c;熟悉Linux操作系統的指令和配置運作方式&#xff0c;後來在樹莓派價格飛漲的時期&#xff0c;遇到貴人贈送Raspberry Pi 4 model B / 8GB&#xff0c;這下工具到位了&#xff0c;索性跳過樹莓派官方系統(Raspberry Pi OS)&#xff0c;直…

使用 Python 在 NLP 中进行文本预处理

一、说明 自然语言处理 &#xff08;NLP&#xff09; 是人工智能 &#xff08;AI&#xff09; 和计算语言学的一个子领域&#xff0c;专注于使计算机能够理解、解释和生成人类语言。它涉及计算机和自然语言之间的交互&#xff0c;允许机器以对人类有意义和有用的方式处理、分析…

智能电视与win10电脑后续无法实现DLNA屏幕共享

问题背景&#xff1a; 我用的是TCL电视&#xff0c;但是并不是最新&#xff0c;打开的方式是U盘->电脑&#xff0c;各位看自己情况&#xff0c;很多问题都大概率是智能电视问题。 情景假设&#xff1a; 假设你已经完成原先智能电视该有的步骤&#xff0c;通过DLNA&#xf…

前馈神经网络正则化例子

直接看代码&#xff1a; import torch import numpy as np import random from IPython import display from matplotlib import pyplot as plt import torchvision import torchvision.transforms as transforms mnist_train torchvision.datasets.MNIST(root…

链游再进化 Web3版CSGO来袭

过去几年&#xff0c;游戏开发者们一直希望借Web3这个价值流通网络&#xff0c;改造传统游戏的经济系统&#xff0c;将虚拟资产的掌管权交给用户&#xff0c;让资产自由地在市场流通。 Web3游戏发展史上&#xff0c;涌现过CryptoKitties、Axie Infinity两大爆款&#xff0c;但…

爬虫框架- feapder + 爬虫管理系统 - feaplat 的学习简记

文章目录 feapder 的使用feaplat 爬虫管理系统部署 feapder 的使用 feapder是一款上手简单&#xff0c;功能强大的Python爬虫框架 feapder 官方文档 文档写的很详细&#xff0c;可以直接上手。 基本命令&#xff1a; 创建爬虫项目 feapder create -p first-project创建爬虫 …

LRU算法源码实现

算法介绍&#xff1a; 最近最久未使用&#xff08;Least Recently Used LRU&#xff09;算法是⼀种缓存淘汰策略。该算法的思路是&#xff0c;将最近一段时间内最久未使用的页面置换出去。 升级版LRUK算法见 基于LRU-K算法设计本地缓存实现流量削峰https://blog.csdn.net/l…

Deep Learning With Pytorch - 最基本的感知机、贯序模型/分类、拟合

文章目录 如何利用pytorch创建一个简单的网络模型&#xff1f;Step1. 感知机&#xff0c;多层感知机&#xff08;MLP&#xff09;的基本结构Step2. 超平面 ω T ⋅ x b 0 \omega^{T}xb0 ωT⋅xb0 or ω T ⋅ x b \omega^{T}xb ωT⋅xb感知机函数 Step3. 利用感知机进行决策…

虚拟机问题

虚拟机无法识别USB设备 经排查为VMware USB Arbitration Service 没有启动,但是VMware USB Arbitration Service依赖于VMware Workstation Server启动 VMware USB Arbitration Service(VMUSBArbService)是由 VMware 虚拟化软件提供的一个服务,用于协调和管理主机系统上的…

Flink CDC系列之:基于 Flink CDC 构建 MySQL 和 Postgres 的 Streaming ETL

Flink CDC系列之&#xff1a;基于 Flink CDC 构建 MySQL 和 Postgres 的 Streaming ETL 一、技术路线二、MySQL数据库建表三、PostgreSQL数据库建表四、在 Flink SQL CLI 中使用 Flink DDL 创建表五、关联订单数据并且将其写入 Elasticsearch 中六、Kibana查看商品和物流信息的…

leetcode611. 有效三角形的个数(java)

有效三角形的个数 有效三角形的个数排序加二分排序 双指针 上期算法 有效三角形的个数 给定一个包含非负整数的数组 nums &#xff0c;返回其中可以组成三角形三条边的三元组个数。 示例 1: 输入: nums [2,2,3,4] 输出: 3 解释:有效的组合是: 2,3,4 (使用第一个 2) 2,3,4 (使…

如何修复损坏的DOC和DOCX格式Word文件?

我们日常办公中&#xff0c;经常用到Word文档。但是有时会遇到word文件损坏、无法打开的情况。这时该怎么办&#xff1f;接着往下看&#xff0c;小编在这里就给大家带来最简单的Word文件修复方法&#xff01; 很多时候DOC和DOCX Word文件会无缘无故的损坏无法打开&#xff0c;一…

【C++ 记忆站】引用

文章目录 一、引用概念二、引用特性1、引用在定义时必须初始化2、一个变量可以有多个引用3、引用一旦引用一个实体&#xff0c;再不能引用其他实体 三、常引用四、使用场景1、做参数1、输出型参数2、大对象传参 2、做返回值1、传值返回2、传引用返回 五、传值、传引用效率比较六…

【C语言】每日一题(找到所有数组中消失的数字)

找到所有数组中消失的数字&#xff0c;链接奉上。 这里简单说一下&#xff0c;因为还没有接触到动态内存&#xff0c;数据结构&#xff0c;所以知识有限&#xff0c;也是尽力而为&#xff0c;结合题库的评论区找到了适合我的解法&#xff0c;以后有机会&#xff0c;会补上各种…