GPT-4从0到1搭建一个Agent简介

Agent

GPT-4从0到1搭建一个Agent简介

1. 引言

在人工智能领域,Agent是一种能够感知环境并采取行动以实现特定目标的系统。本文将简单介绍如何基于GPT-4搭建一个Agent。

2. Agent的基本原理

Agent的核心是感知-行动循环(Perception-Action Loop),该循环可以描述如下:

  1. 感知:Agent通过传感器获取环境信息。
  2. 决策:基于感知到的信息和内部状态,Agent选择一个行动。
  3. 行动:Agent通过执行器作用于环境。

这可以用下列公式表示:
a t = π ( s t ) a_t = \pi(s_t) at=π(st)
其中:

  • a t a_t at 表示在时间 t t t 采取的行动。
  • π \pi π 表示策略函数。
  • s t s_t st 表示在时间 t t t 的状态。

3. 基于GPT-4的Agent架构

GPT-4 是一种强大的语言模型,可以用于构建智能Agent。其主要步骤包括:

  1. 输入处理:接收并处理输入。
  2. 决策生成:基于输入生成响应或行动。
  3. 输出执行:执行或输出响应。

4. 环境搭建

4.1 安装必要的库
pip install openai
4.2 初始化GPT-4
import openai

openai.api_key = 'YOUR_API_KEY'

def generate_response(prompt):
    response = openai.Completion.create(
      engine="gpt-4",
      prompt=prompt,
      max_tokens=150
    )
    return response.choices[0].text.strip()

5. 感知模块

感知模块用于接收环境信息。在这个例子中,我们假设环境信息是自然语言描述。

def perceive_environment(input_text):
    # 处理输入文本,将其转换为状态描述
    state = {"description": input_text}
    return state

6. 决策模块

决策模块基于当前状态生成行动。在这里,我们使用GPT-4生成响应作为行动。

def decide_action(state):
    prompt = f"Based on the following state: {state['description']}, what should the agent do next?"
    action = generate_response(prompt)
    return action

7. 行动模块

行动模块负责执行决策。在这个例子中,我们简单地打印生成的响应。

def act(action):
    print(f"Agent action: {action}")

8. 整合与执行

将上述模块整合在一起,形成完整的Agent。

def run_agent(input_text):
    state = perceive_environment(input_text)
    action = decide_action(state)
    act(action)

# 示例执行
input_text = "The room is dark and you hear strange noises."
run_agent(input_text)

9. 深度解析

9.1 感知-决策-行动循环的数学模型

在强化学习中,这一过程可以形式化为马尔可夫决策过程(MDP),用以下四元组表示:
⟨ S , A , P , R ⟩ \langle S, A, P, R \rangle S,A,P,R
其中:

  • S S S 是状态空间。
  • A A A 是行动空间。
  • P P P 是状态转移概率函数 P ( s ′ ∣ s , a ) P(s'|s, a) P(ss,a)
  • R R R 是奖励函数 R ( s , a ) R(s, a) R(s,a)

对于每一个状态 s t s_t st 和行动 a t a_t at,目标是最大化预期回报:
G t = ∑ k = 0 ∞ γ k r t + k G_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k} Gt=k=0γkrt+k
其中:

  • γ \gamma γ 是折扣因子。
  • r t r_t rt 是在时间 t t t 收到的即时奖励。

在我们构建的基于GPT-4的Agent中,GPT-4充当策略函数 π \pi π,即:
π ( s t ) = GPT-4 ( s t ) \pi(s_t) = \text{GPT-4}(s_t) π(st)=GPT-4(st)

9.2 感知模块细节

感知模块不仅仅是将输入文本转化为状态描述。在实际应用中,可能需要对输入文本进行预处理,如分词、实体识别、情感分析等,以提取更有用的信息。

def perceive_environment(input_text):
    # 进行分词和预处理
    words = input_text.split()
    entities = extract_entities(input_text)  # 伪代码,假设有一个提取实体的函数
    sentiment = analyze_sentiment(input_text)  # 伪代码,假设有一个分析情感的函数
    
    state = {
        "description": input_text,
        "words": words,
        "entities": entities,
        "sentiment": sentiment
    }
    return state
9.3 决策模块细节

在决策模块中,我们可以引入更多上下文信息,提高GPT-4生成响应的准确性。

def decide_action(state):
    # 将状态信息整合成一个完整的提示
    prompt = (
        f"Based on the following state:\n"
        f"Description: {state['description']}\n"
        f"Words: {state['words']}\n"
        f"Entities: {state['entities']}\n"
        f"Sentiment: {state['sentiment']}\n"
        "What should the agent do next?"
    )
    action = generate_response(prompt)
    return action

10. 深度学习与强化学习结合

尽管GPT-4非常强大,但它是基于语言模型的,而不是传统的强化学习模型。然而,我们可以将其与强化学习方法结合,创建更强大的智能体。

10.1 强化学习背景

强化学习(Reinforcement Learning, RL)是机器学习的一个重要分支,其核心思想是智能体通过与环境的交互来学习最优策略。智能体在每个时间步接收到环境的状态,并选择一个行动,环境反馈给智能体一个奖励值和新的状态。智能体的目标是最大化累积奖励。

10.2 强化学习与GPT-4结合

我们可以将GPT-4生成的响应作为智能体的策略输出,然后通过强化学习的方法来调整和优化GPT-4的提示输入,从而提高智能体的整体表现。

import random

class RLAgent:
    def __init__(self, environment):
        self.environment = environment
        self.q_table = {}  # Q-table初始化为空

    def perceive(self):
        return self.environment.get_state()

    def decide(self, state):
        if state not in self.q_table:
            self.q_table[state] = {}
        if random.random() < 0.1:  # 10%的探索率
            action = self.environment.random_action()
        else:
            action = max(self.q_table[state], key=self.q_table[state].get, default=self.environment.random_action())
        return action

    def act(self, action):
        next_state, reward = self.environment.step(action)
        return next_state, reward

    def learn(self, state, action, reward, next_state):
        if state not in self.q_table:
            self.q_table[state] = {}
        if action not in self.q_table[state]:
            self.q_table[state][action] = 0
        max_next_q = max(self.q_table[next_state].values(), default=0)
        self.q_table[state][action] += 0.1 * (reward + 0.99 * max_next_q - self.q_table[state][action])

# 假设有一个定义好的环境类
environment = Environment()
agent = RLAgent(environment)

for episode in range(1000):
    state = agent.perceive()
    done = False
    while not done:
        action = agent.decide(state)
        next_state, reward = agent.act(action)
        agent.learn(state, action, reward, next_state)
        state = next_state
        if environment.is_terminal(state):
            done = True

11. 总结

本文详细介绍了如何基于GPT-4从0到1构建一个Agent,包括感知、决策和行动模块的实现,以及如何将GPT-4与强化学习方法结合,进一步优化智能体的表现。通过具体的代码示例,展示了Agent的基本架构和工作原理。希望对各位在构建智能Agent方面有所帮助。

参考资料

  • OpenAI GPT-4 API文档
  • 强化学习:马尔可夫决策过程(MDP)理论

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/799058.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

电脑文件误删除如何恢复?Top12电脑数据恢复软件汇总合集!(图文详解)

电脑文件误删除如何恢复&#xff1f;在日常使用电脑过程中&#xff0c;我们经常会遇到意外删除文件的情况。可能是因为按错了按键、误操作了鼠标&#xff0c;或者意外格式化了存储设备。这些情况都可能导致重要的文件不小心被删除。但是不用担心&#xff0c;有许多专业的数据恢…

从 Pandas 到 Polars 十八:数据科学 2025,对未来几年内数据科学领域发展的预测或展望

我在2021年底开始使用Polars和DuckDB。我立刻意识到这些库很快就会成为数据科学生态系统的核心。自那时起&#xff0c;这些库的受欢迎程度呈指数级增长。 在这篇文章中&#xff0c;我做出了一些关于未来几年数据科学领域的发展方向和原因的预测。 这篇文章旨在检验我的预测能力…

Js 前置,后置补零的原生方法与补字符串 padStart及padEnd

在工作中&#xff0c;遇到了需要将不满八位的一个字符串进行后补0的操作&#xff0c;所以就在网上学习了关于js原生补充字符串的方法&#xff0c;然后用这篇博客记录下来。 目录 前置补充字符串 String.prototype.padStart() 后置补充字符串String.prototype.padEnd() 前置补…

synchronized关键字详解

文章目录 synchronized使用示例实现原理锁的升级synchronized与可见性synchronized与原子性synchronized与有序性 synchronized synchronized是Java提供的关键字译为同步&#xff0c;是Java中用于实现线程同步的一种机制。它可以确保在同一时间只有一个线程能够执行某段代码&a…

STM32第十九课:FreeRTOS移植和使用

目录 需求一、FreeRtos概要二、移植FreeRtos1.复制源码2.内存空间分配和内核相关接口3.FreeRTOSConfig.h4.在工程中添加.c.h 三、任务块操作1.创建任务2.任务挂起&#xff0c;恢复&#xff0c;删除 四、需求实现代码 需求 1.将FreeRtos&#xff08;嵌入式实时操作系统&#xf…

STM32 BootLoader 刷新项目 (四) 通信协议

STM32 BootLoader 刷新项目 (四) 通信协议 文章目录 STM32 BootLoader 刷新项目 (四) 通信协议1. 通信流程2. 支持指令3. 通信流程4. 指令结构5. 操作演示 前面几章节&#xff0c;我们已经介绍了BootLoader的整体程序框架&#xff0c;方案设计&#xff0c;以及STM32CubdeMX的配…

Kafka基本原理|特性

Kafka是什么 Kafka是最初由Linkedin公司开发&#xff0c;是一个分布式、支持分区的&#xff08;partition&#xff09;、多副本的&#xff08;replica&#xff09;&#xff0c;基于zookeeper协调的分布式消息系统 它的最大的特性就是可以实时的处理大量数据以满足各种需求场景…

等保五级分类详解:从自主保护到专控保护的全方位信息安全

等保&#xff0c;即信息安全等级保护&#xff0c;是一项旨在保障电子信息系统安全的重要标准。根据系统所承载的信息重要性和可能遭受的损害程度&#xff0c;等保将信息系统划分为五个不同的安全等级。每个等级都有其特定的安全要求和测评周期&#xff0c;以确保不同规模和类型…

ES13的4个改革性新特性

1、类字段声明 在 ES13 之前,类字段只能在构造函数中声明, ES13 消除了这个限制 // 之前 class Car {constructor() {this.color = blue;this.age = 2

大气热力学(8)——热力学图的应用之一(气象要素求解)

本篇文章源自我在 2021 年暑假自学大气物理相关知识时手写的笔记&#xff0c;现转化为电子版本以作存档。相较于手写笔记&#xff0c;电子版的部分内容有补充和修改。笔记内容大部分为公式的推导过程。 文章目录 8.1 复习斜 T-lnP 图上的几种线8.1.1 等温线和等压线8.1.2 干绝热…

一个老程序员对小浣熊 AI 办公助手的使用体验

我是一个老程序员&#xff0c;今年 42 岁&#xff0c;仍然在一线编程领域工作。 2022 年底以 ChatGPT 为代表的 AI 工具席卷整个业界后&#xff0c;我也使用了不少能提高办公效率的 AI 工具。比如程序员的好帮手&#xff0c;来自微软的 Copilot. 这款名叫小浣熊的 AI 办公工具…

Web 性能入门指南-1.2 分析在线零售 Web 性能及优化方向

让顾客满意是零售业成功的秘诀。事实证明&#xff0c;提供快速、一致的在线体验可以显著提高零售商关心的每项指标——从转化率和收入到留存率和品牌认知度。 本文大纲&#xff1a; 页面速度影响在线零售业务数据 如何将您的网站速度与竞争对手进行比较 性能优化入门&#xf…

怎样在 PostgreSQL 中优化对复合索引的选择性?

&#x1f345;关注博主&#x1f397;️ 带你畅游技术世界&#xff0c;不错过每一次成长机会&#xff01;&#x1f4da;领书&#xff1a;PostgreSQL 入门到精通.pdf 文章目录 怎样在 PostgreSQL 中优化对复合索引的选择性一、理解复合索引的概念二、选择性的重要性三、优化复合索…

神经网络识别数字图像案例

学习资料&#xff1a;从零设计并训练一个神经网络&#xff0c;你就能真正理解它了_哔哩哔哩_bilibili 这个视频讲得相当清楚。本文是学习笔记&#xff0c;不是原创&#xff0c;图都是从视频上截图的。 1. 神经网络 2. 案例说明 具体来说&#xff0c;设计一个三层的神经网络。…

采用自动微分进行模型的训练

自动微分训练模型 简单代码实现&#xff1a; import torch import torch.nn as nn import torch.optim as optim# 定义一个简单的线性回归模型 class LinearRegression(nn.Module):def __init__(self):super(LinearRegression, self).__init__()self.linear nn.Linear(1, 1) …

链接追踪系列-07.logstash安装json_lines插件

进入docker中的logstash 容器内&#xff1a; jelexbogon ~ % docker exec -it 7ee8960c99a31e607f346b2802419b8b819cc860863bc283cb7483bc03ba1420 /bin/sh $ pwd /usr/share/logstash $ ls bin CONTRIBUTORS Gemfile jdk logstash-core modules tools x-pack …

如何预防最新的baxia变种勒索病毒感染您的计算机?

引言 在当今数字化时代&#xff0c;网络安全威胁层出不穷&#xff0c;其中勒索病毒已成为企业和个人面临的重大挑战之一。近期&#xff0c;.baxia勒索病毒以其高隐蔽性和破坏性引起了广泛关注。本文将详细介绍.baxia勒索病毒的特点、传播方式&#xff0c;并给出相应的应对策略…

2024-07-15 Unity插件 Odin Inspector3 —— Button Attributes

文章目录 1 说明2 Button 特性2.1 Button2.2 ButtonGroup2.3 EnumPaging2.4 EnumToggleButtons2.5 InlineButton2.6 ResponsiveButtonGroup 1 说明 ​ 本章介绍 Odin Inspector 插件中有关 Button 特性的使用方法。 2 Button 特性 2.1 Button 依据方法&#xff0c;在 Inspec…

YOLOv8训练自己的数据集(超详细)

一、准备深度学习环境 本人的笔记本电脑系统是&#xff1a;Windows10 YOLO系列最新版本的YOLOv8已经发布了&#xff0c;详细介绍可以参考我前面写的博客&#xff0c;目前ultralytics已经发布了部分代码以及说明&#xff0c;可以在github上下载YOLOv8代码&#xff0c;代码文件夹…

力扣经典题目之->移除值为val元素的讲解,的实现与讲解

一&#xff1a;题目 博主本文将用指向来形象的表示下标位的移动。 二&#xff1a;思路 1&#xff1a;两个整形&#xff0c;一个start&#xff0c;一个end&#xff0c;在一开始都 0&#xff0c;即这里都指向第一个元素。 2&#xff1a;在查到val之前&#xff0c;查一个&…