YOLOv8训练自己的数据集(超详细)

 一、准备深度学习环境

本人的笔记本电脑系统是:Windows10
YOLO系列最新版本的YOLOv8已经发布了,详细介绍可以参考我前面写的博客,目前ultralytics已经发布了部分代码以及说明,可以在github上下载YOLOv8代码,代码文件夹中会有requirements.txt文件,里面描述了所需要的安装包。

本文最终安装的pytorch版本是1.8.1,torchvision版本是0.9.1,python是3.7.10,其他的依赖库按照requirements.txt文件安装即可。

然后还需要安装ultralytics,目前YOLOv8核心代码都封装在这个依赖包里面,可通过以下命令安装

pip install ultralytics

二、 准备自己的数据集

本人在训练YOLOv8时,选择的数据格式是VOC,因此下面将介绍如何将自己的数据集转换成可以直接让YOLOv8进行使用。

1、创建数据集

我的数据集都在保存在mydata文件夹(名字可以自定义),目录结构如下,将之前labelImg标注好的xml文件和图片放到对应目录下
mydata
…images # 存放图片
…xml # 存放图片对应的xml文件
…dataSet #之后会在Main文件夹内自动生成train.txt,val.txt,test.txt和trainval.txt四个文件,存放训练集、验证集、测试集图片的名字(无后缀.jpg)
示例如下:
mydata文件夹下内容如下:

  • image为VOC数据集格式中的JPEGImages,内容如下:

  • xml文件夹下面为.xml文件(标注工具采用labelImage),内容如下: 

  • dataSet 文件夹下面存放训练集、验证集、测试集的划分,通过脚本生成,可以创建一个split_train_val.py文件,代码内容如下:
# coding:utf-8

import os
import random
import argparse

parser = argparse.ArgumentParser()
# xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default='xml', type=str, help='input xml label path')
# 数据集的划分,地址选择自己数据下的ImageSets/Main
parser.add_argument('--txt_path', default='dataSet', type=str, help='output txt label path')
opt = parser.parse_args()

trainval_percent = 1.0
train_percent = 0.9
xmlfilepath = opt.xml_path
txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)
if not os.path.exists(txtsavepath):
    os.makedirs(txtsavepath)

num = len(total_xml)
list_index = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list_index, tv)
train = random.sample(trainval, tr)

file_trainval = open(txtsavepath + '/trainval.txt', 'w')
file_test = open(txtsavepath + '/test.txt', 'w')
file_train = open(txtsavepath + '/train.txt', 'w')
file_val = open(txtsavepath + '/val.txt', 'w')

for i in list_index:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        file_trainval.write(name)
        if i in train:
            file_train.write(name)
        else:
            file_val.write(name)
    else:
        file_test.write(name)

file_trainval.close()
file_train.close()
file_val.close()
file_test.close()
  •  运行代码后,在dataSet 文件夹下生成下面四个txt文档:

  • 三个txt文件里面的内容如下: 

 2、转换数据格式

接下来准备labels,把数据集格式转换成yolo_txt格式,即将每个xml标注提取bbox信息为txt格式,每个图像对应一个txt文件,文件每一行为一个目标的信息,包括class, x_center, y_center, width, height格式。格式如下:

  •  创建voc_label.py文件,将训练集、验证集、测试集生成label标签(训练中要用到),同时将数据集路径导入txt文件中,代码内容如下:
# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import os
from os import getcwd

sets = ['train', 'val', 'test']
classes = ["a", "b"]   # 改成自己的类别
abs_path = os.getcwd()
print(abs_path)

def convert(size, box):
    dw = 1. / (size[0])
    dh = 1. / (size[1])
    x = (box[0] + box[1]) / 2.0 - 1
    y = (box[2] + box[3]) / 2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return x, y, w, h

def convert_annotation(image_id):
    in_file = open('data/mydata/xml/%s.xml' % (image_id), encoding='UTF-8')
    out_file = open('data/mydata/labels/%s.txt' % (image_id), 'w')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)
    for obj in root.iter('object'):
        # difficult = obj.find('difficult').text
        difficult = obj.find('Difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        b1, b2, b3, b4 = b
        # 标注越界修正
        if b2 > w:
            b2 = w
        if b4 > h:
            b4 = h
        b = (b1, b2, b3, b4)
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')

wd = getcwd()
for image_set in sets:
    if not os.path.exists('data/mydata/labels/'):
        os.makedirs('data/mydata/labels/')
    image_ids = open('data/mydata/dataSet/%s.txt' % (image_set)).read().strip().split()
    list_file = open('paper_data/%s.txt' % (image_set), 'w')
    for image_id in image_ids:
        list_file.write(abs_path + '/mydata/images/%s.jpg\n' % (image_id))
        convert_annotation(image_id)
    list_file.close()

 3、配置文件

1)数据集的配置
在mydata文件夹下新建一个mydata.yaml文件(可以自定义命名),用来存放训练集和验证集的划分文件(train.txt和val.txt),这两个文件是通过运行voc_label.py代码生成的,然后是目标的类别数目和具体类别列表,mydata.yaml内容如下:

2) 选择一个你需要的模型
在ultralytics/models/v8/目录下是模型的配置文件,这边提供s、m、l、x版本,逐渐增大(随着架构的增大,训练时间也是逐渐增大),假设采用yolov8x.yaml,只用修改一个参数,把nc改成自己的类别数,需要取整(可选) 如下:

  至此,自定义数据集已创建完毕,接下来就是训练模型了。

 三、模型训练

1、下载预训练模型

在YOLOv8的GitHub开源网址上下载对应版本的模型

 2、训练

接下来就可以开始训练模型了,命令如下:

yolo task=detect mode=train model=yolov8x.yaml data=mydata.yaml epochs=1000 batch=16

以上参数解释如下:

task:选择任务类型,可选['detect', 'segment', 'classify', 'init']

mode: 选择是训练、验证还是预测的任务蕾西 可选['train', 'val', 'predict']

model: 选择yolov8不同的模型配置文件,可选yolov8s.yaml、yolov8m.yaml、yolov8l.yaml、yolov8x.yaml

data: 选择生成的数据集配置文件

epochs:指的就是训练过程中整个数据集将被迭代多少次,显卡不行你就调小点。
batch:一次看完多少张图片才进行权重更新,梯度下降的mini-batch,显卡不行你就调小点。
 

训练过程如下所示

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/799030.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

力扣经典题目之->移除值为val元素的讲解,的实现与讲解

一:题目 博主本文将用指向来形象的表示下标位的移动。 二:思路 1:两个整形,一个start,一个end,在一开始都 0,即这里都指向第一个元素。 2:在查到val之前,查一个&…

昇思25天学习打卡营第12天|MindSpore 助力下的 GPT2:数据集加载处理及模型全攻略

环境配置 %%capture captured_output 此乃 Jupyter Notebook 中的一个魔法命令,其作用在于捕获后续单元格中的输出,并将之存储于变量 captured_output 当中,而非直接于输出区域予以显示。如此一来,便可隐匿某些可能存在的输出信息…

【学习笔记】无人机(UAV)在3GPP系统中的增强支持(九)-无人机服务区分离

引言 本文是3GPP TR 22.829 V17.1.0技术报告,专注于无人机(UAV)在3GPP系统中的增强支持。文章提出了多个无人机应用场景,分析了相应的能力要求,并建议了新的服务级别要求和关键性能指标(KPIs)。…

小程序里面使用vant ui中的vant-field组件,如何使得输入框自动获取焦点

//.wxml <van-fieldmodel:value"{{ userName }}"placeholder"请输入学号"focus"{{focusUserName}}"/>// .js this.setData({focusUserName: true});vant-field

钡铼ARMxy控制器在智能网关中的应用

随着IoT物联网技术的飞速发展&#xff0c;智能网关作为连接感知层与网络层的枢纽&#xff0c;可以实现感知网络和通信网络以及不同类型感知网络之间的协议转换。钡铼技术的ARMxy系列控制器凭借其高性能、低功耗和高度灵活性的特点&#xff0c;在智能网关中发挥了关键作用&#…

RPC与服务的注册发现

文章目录 1. 什么是远程过程调用(RPC)?2. RPC的流程3. RPC实践4. RPC与REST的区别4.1 RPC与REST的相似之处4.2 RPC与REST的架构原则4.3 RPC与REST的主要区别 5. RPC与服务发现5.1 以zookeeper为服务注册中心5.2 以etcd为服务注册中心 6. 小结参考 1. 什么是远程过程调用(RPC)?…

大语言模型诞生过程剖析

过程图如下 &#x1f4da; 第一步&#xff1a;海量文本的无监督学习 得到基座大模型&#x1f389; &#x1f50d; 原料&#xff1a;首先&#xff0c;我们需要海量的文本数据&#xff0c;这些数据可以来自互联网上的各种语料库&#xff0c;包括书籍、新闻、科学论文、社交媒体帖…

<数据集>光伏板缺陷检测数据集<目标检测>

数据集格式&#xff1a;VOCYOLO格式 图片数量&#xff1a;2400张 标注数量(xml文件个数)&#xff1a;2400 标注数量(txt文件个数)&#xff1a;2400 标注类别数&#xff1a;4 标注类别名称&#xff1a;[Crack,Grid,Spot] 序号类别名称图片数框数1Crack8688922Grid8248843S…

全栈智能家居系统设计方案:STM32+Linux+多协议(MQTT、Zigbee、Z-Wave)通信+云平台集成

1. 项目概述 随着物联网技术的快速发展,智能家居系统正在成为现代生活中不可或缺的一部分。本文介绍了一个基于STM32微控制器和Linux系统的智能家居解决方案,涵盖了硬件设计、软件架构、通信协议以及云平台集成等方面。 该系统具有以下特点: 采用STM32作为终端设备的控制核心…

springboot3——项目部署

springboot的项目开发完了&#xff0c;怎么样把他放到服务器上或者生产环境上让他运行起来跑起来。就要牵扯到项目部署&#xff0c;打包的方式了。 springboot支持jar和war: 打jar包&#xff1a;默认方式&#xff0c;项目开发完打个jar包&#xff0c;通过命令把jar包起起来就…

汇川ST 实现分拣

//初始化 IF init FALSE THEN// 初始化init : 1 ;//45 Y数组 BOOL[8] [OFF发料Y OFF分拣Y OFF送料Y OFF取料Y OFF摆取Y OFF摆放Y OFF升降Y OFF夹料Y] [OFF发料Y OFF分拣Y OFF送料Y OFF取料Y OFF摆取Y OFF摆放Y OFF升降Y OFF夹料Y] 不保持 私有 Y0(*Y数组[0] BOOL OFF 发料…

MySQL 中的几种锁

MySQL 中的锁 #按锁粒度如何划分? 按锁粒度划分的话&#xff0c;MySQL 的锁有&#xff1a; 表锁&#xff1a;开销小&#xff0c;加锁快&#xff1b;锁定力度大&#xff0c;发生锁冲突概率高&#xff0c;并发度最低;不会出现死锁。行锁&#xff1a;开销大&#xff0c;加锁慢…

unity宏编译版本

在写c程序的时候我们通常可以用不同的宏定义来控制不同版本的编译内容&#xff0c;最近有个需求就是根据需要编译一个完全体验版本&#xff0c;就想到了用vs的那套方法。经过研究发现unity也有类似的控制方法。 注意这里设置完后要点击右下的应用&#xff0c;我起先就没有设置…

7/13 - 7/15

vo.setId(rs.getLong("id"))什么意思&#xff1f; vo.setId(rs.getLong("id")); 这行代码是在Java中使用ResultSet对象&#xff08;通常用于从数据库中检索数据&#xff09;获取一个名为"id"的列&#xff0c;并将其作为long类型设置为一个对象…

深度学习基础:Numpy 数组包

数组基础 在使用导入 Numpy 时&#xff0c;通常给其一个别名 “np”&#xff0c;即 import numpy as np 。 数据类型 整数类型数组与浮点类型数组 为了克服列表的缺点&#xff0c;一个 Numpy 数组只容纳一种数据类型&#xff0c;以节约内存。为方便起见&#xff0c;可将 Nu…

简洁实用的原创度检测工具AntiPlagiarism NET 4.132

AntiPlagiarism NET是一个适用于Windows的程序&#xff0c;它允许您检查文本的唯一性和从不同Internet来源借用的存在。使用AntiPlagiarism NET&#xff0c;您可以&#xff1a; 将程序用于不同的目的该程序适用于学生、教师、记者、文案作者和其他需要检查其文本或其他作者文本…

FPGA 项目菜单功能比较

为了帮助您更好地理解每个FPGA功能模块的实用场合、区别和特点&#xff0c;以下是详细的比较&#xff1a; 功能模块实用场合区别特点FPGA I/O自动控制系统、数据采集系统直接与FPGA板卡上的物理端口交互&#xff0c;配置和使用外部I/O设备灵活配置输入输出端口&#xff0c;支持…

开放式蓝牙耳机哪家强?五款值得入手的款式推荐!

当前&#xff0c;耳机技术迎来颠覆性飞跃&#xff0c;开放式蓝牙耳机横空出世&#xff0c;以其卓越的音质体验与无可比拟的听力保护优势&#xff0c;重塑了耳机行业的标准。其非入耳设计&#xff0c;既保证了音质的纯粹传达&#xff0c;又有效避免了长时间佩戴对耳朵的潜在伤害…

板级调试小助手(2)ZYNQ自定义IP核构建属于自己的DDS外设

一、前言 在上期文章中讲述了小助手的系统结构和原理。在PYNQ的框架开发中&#xff0c;我们一般可以将PL端当做PS端的一个外设&#xff0c;通过读写寄存器的方式来操作外设的功能&#xff0c;就类似于在开发ARM和DSP中操作外设一样&#xff0c;不同时的是&#xff0c;我们可以通…

AIGC率超标?掌握论文去AI痕迹的高效策略

随着 AI 技术迅猛发展&#xff0c;各种AI辅助论文写作的工具层出不穷&#xff01; 为了防止有人利用AI工具进行论文代写&#xff0c;在最新的学位法中已经明确规定“已经获得学位者&#xff0c;在获得该学位过程中如有人工智能代写等学术不端行为&#xff0c;经学位评定委员会…