Kafka基本原理|特性

Kafka是什么

Kafka是最初由Linkedin公司开发,是一个分布式、支持分区的(partition)、多副本的(replica),基于zookeeper协调的分布式消息系统
它的最大的特性就是可以实时的处理大量数据以满足各种需求场景:比如基于hadoop的批处理系统、低延迟的实时系统、storm/Spark流式处理引擎,web/nginx日志、访问日志,消息服务等等,用scala语言编写,Linkedin于2010年贡献给了Apache基金会并成为顶级开源 项目。

Kafka的主要应用场景

日志收集: 通过Kafka收集和聚合来自不同源的日志数据。
流式处理: 利用Kafka进行实时数据流的处理和分析。
事件sourcing: 基于Kafka的事件驱动架构进行应用开发。
数据管道: 使用Kafka在不同系统间传输和共享数据。

Kafka的特性

高吞吐:能够每秒处理数百万条消息,满足大规模数据处理的需求,延迟最低只有几毫秒

扩展性:kafka集群支持热扩展,无需停机即可扩展节点及节点上线。

持久性、可靠性:消息被持久化到本地磁盘,并且支持数据备份防止数据丢失

容错性:允许集群中节点失败(若副本数量为n,则允许n-1个节点失败)

高并发:支持数千个客户端同时读写

Kafka 的架构原理

kafaka 底层架构
在这里插入图片描述
基础架构和名词解释
Producer:Producer即生产者,消息的产生者,是消息的入口。
Broker:kafka集群中包含一个或者多个服务实例(节点),这种服务实例被称为broker(一个broker就是一个节点/一个服务器)
Topic:每条发布到kafka集群的消息都属于某个类别,这个类别就叫做topic
Partition:partition是一个物理上的概念也叫分区,每个topic包含一个或者多个partition。分区的作用是做负载,提高kafka的吞吐量。
Replication:每一个分区都有多个副本,副本的作用是做备胎。当主分区(Leader)故障的时候会选择一个备胎(Follower)上位,成为Leader。在kafka中默认副本的最大数量是10个,且副本的数量不能大于Broker的数量,follower和leader是在不同的机器,同一机器对同一个分区也只可能存放一个副本(包括自己)。
Message:每一条发送的消息主体。
Consumer:消费者,即消息的消费方,是消息的出口。
Consumer Group:将多个消费者组成一个消费者组,同一个分区的数据只能被消费者组中的某一个消费者消费。
Zookeeper:kafka集群依赖zookeeper来保存集群的的元信息,来保证系统的可用性。

kafaka 的主要组件

  1. producer(生产者)
    producer主要是用于生产消息,是kafka当中的消息生产者,生产的消息通过topic进行归类,保存到kafka的broker里面去。

  2. topic(主题)
    kafka将消息以topic为单位进行归类;
    topic特指kafka处理的消息源(feeds of messages)的不同分类;
    topic是一种分类。kafka主题始终是支持多用户订阅的;也就是说,一 个主题可以有零个,一个或者多个消费者订阅写入的数据;
    在kafka集群中,可以有无数的主题;
    生产者和消费者消费数据一般以主题为单位,更细粒度可以到分区级别。

  3. partition(分区)
    kafka当中,topic是消息的归类,一个topic可以有多个分区(partition),每个分区保存部分topic的数据,所有的partition当中的数据全部合并起来,就是一个topic当中的所有的数据。
    一个broker服务下,可以创建多个分区;
    每一个分区会有一个编号:编号从0开始。
    每一个分区内的数据是有序的,但全局的数据不能保证是有序的。(有序是指生产什么样顺序,消费时也是什么样的顺序)

  4. consumer(消费者)
    consumer是kafka当中的消费者,主要用于消费kafka当中的数据,消费者一定是归属于某个消费组中的。

  5. consumer group(消费者组)
    消费者组由一个或者多个消费者组成,同一个组中的消费者对于同一条消息只消费一次。

每个消费者都属于某个消费者组,如果不指定,那么所有的消费者都属于默认的组。

每个消费者组都有一个ID,即group ID。组内的所有消费者协调在一起来消费一个订阅主题( topic)的所有分区(partition)。当然,每个分区只能由同一个消费组内的一个消费者(consumer)来消费,可以由不同的消费组来消费。

partition数量决定了每个consumer group中并发消费者的最大数量。如下图:

在这里插入图片描述

如上面左图所示,如果只有两个分区,即使一个组内的消费者有4个,也会有两个空闲的。
如上面右图所示,有4个分区,每个消费者消费一个分区,并发量达到最大4。

在来看如下一幅图:

在这里插入图片描述

如上图所示,不同的消费者组消费同一个topic,这个topic有4个分区,分布在两个节点上。左边的 消费组1有两个消费者,每个消费者就要消费两个分区才能把消息完整的消费完,右边的 消费组2有四个消费者,每个消费者消费一个分区即可。

总结下kafka中分区与消费组的关系

  • 消费组: 由一个或者多个消费者组成,同一个组中的消费者对于同一条消息只消费一次。
    某一个主题下的分区数,对于消费该主题的同一个消费组下的消费者数量,应该小于等于该主题下的分区数。

  • 同一个分区下的数据,在同一时刻,不能同一个消费组的不同消费者消费。

  • 分区数越多,同一时间可以有越多的消费者来进行消费,消费数据的速度就会越快,提高消费的性能。

  1. partition replicas(分区副本)
    kafka 中的分区副本如下图所示:
    在这里插入图片描述

kafka 分区副本

副本数(replication-factor):控制消息保存在几个broker(服务器)上,一般情况下副本数等于broker的个数。

一个broker服务下,不可以创建多个副本因子。创建主题时,副本因子应该小于等于可用的broker数。

副本因子操作以分区为单位的。每个分区都有各自的主副本和从副本;

主副本叫做leader,从副本叫做 follower(在有多个副本的情况下,kafka会为同一个分区下的所有分区,设定角色关系:一个leader和N个 follower),处于同步状态的副本叫做in-sync-replicas(ISR);

follower通过拉的方式从leader同步数据。
消费者和生产者都是从leader读写数据,不与follower交互。

副本因子的作用:让kafka读取数据和写入数据时的可靠性。

副本因子是包含本身,同一个副本因子不能放在同一个broker中。

如果某一个分区有三个副本因子,就算其中一个挂掉,那么只会剩下的两个中,选择一个leader,但不会在其他的broker中,另启动一个副本(因为在另一台启动的话,存在数据传递,只要在机器之间有数据传递,就会长时间占用网络IO,kafka是一个高吞吐量的消息系统,这个情况不允许发生)所以不会在另一个broker中启动。

如果所有的副本都挂了,生产者如果生产数据到指定分区的话,将写入不成功。

lsr表示:当前可用的副本。

kafka中的数据不丢失机制

  1. 生产者生产数据不丢失
    发送消息方式
    生产者发送给kafka数据,可以采用同步方式或异步方式

同步方式:

发送一批数据给kafka后,等待kafka返回结果:

生产者等待10s,如果broker没有给出ack响应,就认为失败。
生产者重试3次,如果还没有响应,就报错.
异步方式:

发送一批数据给kafka,只是提供一个回调函数:

先将数据保存在生产者端的buffer中。buffer大小是2万条 。
满足数据阈值或者数量阈值其中的一个条件就可以发送数据。
发送一批数据的大小是500条。
注:如果broker迟迟不给ack,而buffer又满了,开发者可以设置是否直接清空buffer中的数据。

ack机制(确认机制)
生产者数据发送出去,需要服务端返回一个确认码,即ack响应码;ack的响应有三个状态值0,1,-1

0:生产者只负责发送数据,不关心数据是否丢失,丢失的数据,需要再次发送

1:partition的leader收到数据,不管follow是否同步完数据,响应的状态码为1

-1:所有的从节点都收到数据,响应的状态码为-1

如果broker端一直不返回ack状态,producer永远不知道是否成功;producer可以设置一个超时时间10s,超过时间认为失败。

  1. broker中数据不丢失
    在broker中,保证数据不丢失主要是通过副本因子(冗余),防止数据丢失。

  2. 消费者消费数据不丢失
    在消费者消费数据的时候,只要每个消费者记录好offset值即可,就能保证数据不丢失。也就是需要我们自己维护偏移量(offset),可保存在 Redis 中。

参考文章:https://www.cnblogs.com/itlz/p/14292104.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/799046.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

等保五级分类详解:从自主保护到专控保护的全方位信息安全

等保,即信息安全等级保护,是一项旨在保障电子信息系统安全的重要标准。根据系统所承载的信息重要性和可能遭受的损害程度,等保将信息系统划分为五个不同的安全等级。每个等级都有其特定的安全要求和测评周期,以确保不同规模和类型…

ES13的4个改革性新特性

1、类字段声明 在 ES13 之前,类字段只能在构造函数中声明, ES13 消除了这个限制 // 之前 class Car {constructor() {this.color = blue;this.age = 2

大气热力学(8)——热力学图的应用之一(气象要素求解)

本篇文章源自我在 2021 年暑假自学大气物理相关知识时手写的笔记,现转化为电子版本以作存档。相较于手写笔记,电子版的部分内容有补充和修改。笔记内容大部分为公式的推导过程。 文章目录 8.1 复习斜 T-lnP 图上的几种线8.1.1 等温线和等压线8.1.2 干绝热…

一个老程序员对小浣熊 AI 办公助手的使用体验

我是一个老程序员,今年 42 岁,仍然在一线编程领域工作。 2022 年底以 ChatGPT 为代表的 AI 工具席卷整个业界后,我也使用了不少能提高办公效率的 AI 工具。比如程序员的好帮手,来自微软的 Copilot. 这款名叫小浣熊的 AI 办公工具…

Web 性能入门指南-1.2 分析在线零售 Web 性能及优化方向

让顾客满意是零售业成功的秘诀。事实证明,提供快速、一致的在线体验可以显著提高零售商关心的每项指标——从转化率和收入到留存率和品牌认知度。 本文大纲: 页面速度影响在线零售业务数据 如何将您的网站速度与竞争对手进行比较 性能优化入门&#xf…

怎样在 PostgreSQL 中优化对复合索引的选择性?

🍅关注博主🎗️ 带你畅游技术世界,不错过每一次成长机会!📚领书:PostgreSQL 入门到精通.pdf 文章目录 怎样在 PostgreSQL 中优化对复合索引的选择性一、理解复合索引的概念二、选择性的重要性三、优化复合索…

神经网络识别数字图像案例

学习资料:从零设计并训练一个神经网络,你就能真正理解它了_哔哩哔哩_bilibili 这个视频讲得相当清楚。本文是学习笔记,不是原创,图都是从视频上截图的。 1. 神经网络 2. 案例说明 具体来说,设计一个三层的神经网络。…

采用自动微分进行模型的训练

自动微分训练模型 简单代码实现: import torch import torch.nn as nn import torch.optim as optim# 定义一个简单的线性回归模型 class LinearRegression(nn.Module):def __init__(self):super(LinearRegression, self).__init__()self.linear nn.Linear(1, 1) …

链接追踪系列-07.logstash安装json_lines插件

进入docker中的logstash 容器内: jelexbogon ~ % docker exec -it 7ee8960c99a31e607f346b2802419b8b819cc860863bc283cb7483bc03ba1420 /bin/sh $ pwd /usr/share/logstash $ ls bin CONTRIBUTORS Gemfile jdk logstash-core modules tools x-pack …

如何预防最新的baxia变种勒索病毒感染您的计算机?

引言 在当今数字化时代,网络安全威胁层出不穷,其中勒索病毒已成为企业和个人面临的重大挑战之一。近期,.baxia勒索病毒以其高隐蔽性和破坏性引起了广泛关注。本文将详细介绍.baxia勒索病毒的特点、传播方式,并给出相应的应对策略…

2024-07-15 Unity插件 Odin Inspector3 —— Button Attributes

文章目录 1 说明2 Button 特性2.1 Button2.2 ButtonGroup2.3 EnumPaging2.4 EnumToggleButtons2.5 InlineButton2.6 ResponsiveButtonGroup 1 说明 ​ 本章介绍 Odin Inspector 插件中有关 Button 特性的使用方法。 2 Button 特性 2.1 Button 依据方法,在 Inspec…

YOLOv8训练自己的数据集(超详细)

一、准备深度学习环境 本人的笔记本电脑系统是:Windows10 YOLO系列最新版本的YOLOv8已经发布了,详细介绍可以参考我前面写的博客,目前ultralytics已经发布了部分代码以及说明,可以在github上下载YOLOv8代码,代码文件夹…

力扣经典题目之->移除值为val元素的讲解,的实现与讲解

一:题目 博主本文将用指向来形象的表示下标位的移动。 二:思路 1:两个整形,一个start,一个end,在一开始都 0,即这里都指向第一个元素。 2:在查到val之前,查一个&…

昇思25天学习打卡营第12天|MindSpore 助力下的 GPT2:数据集加载处理及模型全攻略

环境配置 %%capture captured_output 此乃 Jupyter Notebook 中的一个魔法命令,其作用在于捕获后续单元格中的输出,并将之存储于变量 captured_output 当中,而非直接于输出区域予以显示。如此一来,便可隐匿某些可能存在的输出信息…

【学习笔记】无人机(UAV)在3GPP系统中的增强支持(九)-无人机服务区分离

引言 本文是3GPP TR 22.829 V17.1.0技术报告,专注于无人机(UAV)在3GPP系统中的增强支持。文章提出了多个无人机应用场景,分析了相应的能力要求,并建议了新的服务级别要求和关键性能指标(KPIs)。…

小程序里面使用vant ui中的vant-field组件,如何使得输入框自动获取焦点

//.wxml <van-fieldmodel:value"{{ userName }}"placeholder"请输入学号"focus"{{focusUserName}}"/>// .js this.setData({focusUserName: true});vant-field

钡铼ARMxy控制器在智能网关中的应用

随着IoT物联网技术的飞速发展&#xff0c;智能网关作为连接感知层与网络层的枢纽&#xff0c;可以实现感知网络和通信网络以及不同类型感知网络之间的协议转换。钡铼技术的ARMxy系列控制器凭借其高性能、低功耗和高度灵活性的特点&#xff0c;在智能网关中发挥了关键作用&#…

RPC与服务的注册发现

文章目录 1. 什么是远程过程调用(RPC)?2. RPC的流程3. RPC实践4. RPC与REST的区别4.1 RPC与REST的相似之处4.2 RPC与REST的架构原则4.3 RPC与REST的主要区别 5. RPC与服务发现5.1 以zookeeper为服务注册中心5.2 以etcd为服务注册中心 6. 小结参考 1. 什么是远程过程调用(RPC)?…

大语言模型诞生过程剖析

过程图如下 &#x1f4da; 第一步&#xff1a;海量文本的无监督学习 得到基座大模型&#x1f389; &#x1f50d; 原料&#xff1a;首先&#xff0c;我们需要海量的文本数据&#xff0c;这些数据可以来自互联网上的各种语料库&#xff0c;包括书籍、新闻、科学论文、社交媒体帖…

<数据集>光伏板缺陷检测数据集<目标检测>

数据集格式&#xff1a;VOCYOLO格式 图片数量&#xff1a;2400张 标注数量(xml文件个数)&#xff1a;2400 标注数量(txt文件个数)&#xff1a;2400 标注类别数&#xff1a;4 标注类别名称&#xff1a;[Crack,Grid,Spot] 序号类别名称图片数框数1Crack8688922Grid8248843S…