Hive表【汇总】

提前必备

1、内部表和外部表的区别

概念讲解

外部表:
	1、存放他人给予自己的数据
	2、当我们删除表操作时,会将表的元数据删除,保留数据文件
内部表:
	1、存放已有的数据
	2、当我们删除表操作时,会将表的元数据以及数据文件都删除掉

2、公共查询语句

with:一次查询内可无数次调用
temporary table:一次会话内可无数次调用【临时】
view与table:何时都可无数次调用【永久】

一:内部表

概念

  • 内部表是由 Hive 管理数据和元数据的一种表类型,通常包含表的名称、列定义、存储格式等信息。

  • 【默认创建的表】就是【内部表】

基本形式

create table if not exists inner_table_employee(
	name string,
	places array<string>,
	info struct<gender:string,age:int>,
	scores map<string,int>,
	dept_pos map<string,string>
)
row format delimited
fields terminated by '|'
collection items terminated by ','
map keys terminated by ':'
lines terminated by '\n'
stored as textfile;

二:外部表

概念

  • 创建表时,带有【external】关键字的表即为【外部表】。

  • 外部表允许在 Hive 中定义一个表结构,并对外部存储系统中的数据进行查询和分析,而不会对数据本身进行移动或修改。

基本形式

数据准备

{"name":"henry","age":22,"gender":"male","phone":"18014499655"}
{"name":"pola","age":18,"gender":"female","phone":"18014499656"}

外部表创建

create external table if not exists hive_ext_json_family(
	name string,
	age int,
	gender string,
	phone string
)
row format serde 'org.apache.hive.hcatalog.data.JsonSerDe'
stored as textfile
location '/hive_data/hive_cha01/json';

三:分区表

1、概念

将一份大的文件拆分成多份,每一份存储在hdfs上表空间内的一个专门文件夹内

文件夹的命名包含了字段名和字段值,如:year=2012 形式。

注意:year可以作为字段来使用,但本质上year不是原始表字段,是分区字段。

2、优势

hive进行查询时就是文件流读文件,即使读取一条数据也需要加载整个文件。因此分区表将文件切割成更小的粒度,当需要针对局部数据进行检索、聚合等处理时只需要加载对应的粒度即可,从而提高了处理的效率。

3、建立分区要素

1、字段频繁出现于:
	一:where... , on...
	二:group by... , distribute by ... , cluster by...
	此时,就要考虑将此字段来建立分区
2、数据的容量(大),需要考虑建立分区

4、基本语法形式

create [external] table TABLE_NAME(FIELD_NAME TYPE,...)
partitioned by(PAR_FIELD_NAME TYPE,...)row format delimited | serde 'SERDE_CLASS'
....

5、实际操作

一:分区的建立

创建一级分区
drop table if exists test1w_partitioned_by_year;
create external table if not exists test1w_partitioned_by_year(
	user_id int,
	user_gender string,
	order_time timestamp,
	order_amount decimal(6,2)
)
partitioned by (year int)row format delimited
fields terminated by ';'
stored as textfile;
创建多级分区【以二级分区为例】
drop table if exists test1w_partitioned_by_year_month;
create table if not exists test1w_partitioned_by_year_month(
    user_id int,
    user_gender string,
    order_time timestamp,
    order_amount decimal(6,2)
)
partitioned by(year int,month int)row format delimited
fields terminated by ';'
stored as textfile;

二:数据的操作

静态分区

主要用处:客户按分区级别改|插入数据

1.筛选原文件:
	一级分区:
        cat test1w.log | awk '/2012-/{print $0}'>test2012.log
        cat test1w.log | awk '/2013-/{print $0}'>test2013.log
	多级分区【以二级分区为例】:
		cat test1w.log | awk '/2012-7/{print $0}'>test20127.log
		cat test1w.log | awk '/2012-8/{print $0}'>test20128.log
		
2.装到两分区内:
	一级分区:
		test2012.log:
			load data local inpath '/root/file/test2012.log' 
			overwrite into table hive_internal_par_regex_test1w partition(year=2012);
										
		test2013.log:
			load data local inpath '/root/file/test2013.log' 
			overwrite into table hive_internal_par_regex_test1w partition(year=2013);
								
	多级分区【以二级分区为例】:
		test20127.log:
			load data local inpath '/root/file/test20127.log'
			overwrite into table zhou.test1w_partitioned_by_year_month partition(year=2012,month=7);
									
		test20128.log:
			load data local inpath '/root/file/test20128.log'
			overwrite into table zhou.test1w_partitioned_by_year_month partition(year=2012,month=8);
动态分区

主要用处:项目初期导入数据

准备工作[动态配置]

set hive.exec.dynamic.partition=true;				-- 1、会话
set hive.exec.dynamic.partition.mode=nonstrict;
hive-site.xml										-- 2、个性化配置
hive-default.xml									-- 3、为所有配置项提供默认配置

具体代码

一级分区:
	insert overwrite table test1w_partitioned_by_year partition (`year`)
	select *,year(order_time) from test1w;
	
多级分区【以二级分区为例】:
	insert overwrite table zhou.test1w_partitioned_by_year_month partition (`year`,`month`)
	select * ,year(order_time),month(order_time) from test1w where year(order_time)<=2012;

三:分区的其他操作【查删改】

– 查看分区信息
show partitions 表名;
– 手动添加分区
一级分区:
	alter table zhou.test1w_partitioned_by_year add partition (year=2014);
多级分区【以二级分区为例】:
	alter table zhou.test1w_partitioned_by_year_month add partition (year=2012,month=7);
– 手动删除分区
一级分区:
	alter table zhou.test1w_partitioned_by_year drop partition (year=2014);
多级分区【以二级分区为例】:
	alter table zhou.test1w_partitioned_by_year_month drop partition (year=2012,month=7);

四:分桶表

1、概念

分桶表时将一个表或分区内的数据,拆分成更小的文件片段,使抽样更加高效。

2、必知点

1、分桶字段必须是表中已存在的原始字段
2、默认采用:原始字段值的hashcode%分桶数列 => 决定当前行数据会被拆分到几号桶
3、优势:数据采样
4、采样率:10% -> 桶数定义为10
5、一般是在 【分区】 的基础上进行 【分桶】,更好地优化查询性能。

3、实际应用场景

1.抽样【数据采样】

在开发中,数据量大的情况下,我们为了针对开发做测试,就可以采用分桶来进行数据采样,采样得到的结果是一个具有代表性的查询结果,可以达到快速开发的目的。

2.拉链表【便于修改】

修改某行数据时,无需将整个文件都读取出来,只需将小份文件导出进行修改即可。

4、实际操作

一:创建分桶表

在根据year分区的基础上,对每个year内部进行了分桶,分为4份数据,便于抽样|修改

drop table if exists test1w_partitioned_SeparateBarrel;
create table if not exists test1w_partitioned_SeparateBarrel(
    user_id int,
    user_gender string,
    order_time timestamp,
    order_amount decimal(6,2)
)
partitioned by(year int)
clustered by(order_time) into 4 buckets	✔	=> 此时采样率:25%
row format delimited
fields terminated by ';'
stored as textfile;

二:数据的操作

准备工作[动态配置]
set hive.exec.dynamic.partition=true;				-- 1、会话
set hive.exec.dynamic.partition.mode=nonstrict;
hive-site.xml										-- 2、个性化配置
hive-default.xml									-- 3、为所有配置项提供默认配置
具体代码
insert into table zhou.test1w_partitioned_SeparateBarrel partition (year)
select *,year(order_time) from test1w;

三:实际应用【数据采集】

–随机抽样【基于整行数据】

基本解释

  • 取每个桶中 四分之三的数据【很少用】
  • 进行随机抽样,不考虑数据的顺序或时间等因素,可以使用类似 bucket 3 out of 4 on rand()形式,这样每次抽样的结果可能会有所不同,适合需要随机性的分析或实验。
select * from test1w_partitioned_SeparateBarrel
tablesample(bucket 3 out of 4 on rand())s;
–分桶字段抽样【基于指定列】✔

基本解释

  • 取每个桶中 四分之一的数据[桶]【随机】 => 推荐使用,使用分桶列更高效

  • 从【有序的数据】中抽样,例如按照时间排序的订单数据,可以使用类似于 bucket 3 out of 4 on order_time形式,这样可以保证抽样数据具有一定的顺序性和连续性。

最终结果分析:最后获取的数据是在每个分区【文件夹】内随机抽取指定数量【如:四分之一]的数据[桶]】=> 抽到的数据[桶]是具有随机性的。

select year,count(*) as order_count from test1w_partitioned_SeparateBarrel
tablesample ( bucket 1 out of 4 on order_time)s
group by year;

五:临时表(temporary)

1、概念

  • 一次链接(会话session)内临时创建的表格,会话结束后自动删除
默认hdfs路径:/tmp/hive/root 内根据时间寻找临时表		
idea中:show tables; 才可看到临时表。

2、实际操作

create temporary table if not exists test1w_gender as
select user_gender,count(*) as gender_cnt from zhou.test1w group by user_gender;

六:视图(view)

1、概念

  • 本质:一条较为复杂的共用的查询语句

2、实际操作

create view if not exists hive_view_test1w_Girl as
select * from test1w where user_gender = "女";

七:拉链表(zip tables)

1、发展流程

hive发展

  • hive 0.14就已经有这一逻辑模型,名为slowly changing dimension。
  • hive 2.6.0 支持merge语法,运用了 事务管理

拉链表由来

原来采用分区表,用户分区存储历史增量数据,缺点是重复数据太多
目前运用拉链表来解决这一问题

2、含义

用于解决持续增长且存在一定时间范围内重复的数据,即:合并有一定重复性【较小时间范围内】的数据。

3、优点

  • 节约空间(一份订单只有一条数据)

4、应用场景

【数据规模庞大】,新数据【在有限区间(时间…)内】存在多种状态变化

5、准备工作[动态配置]

set hive.support.concurrency=true;
set hive.enforce.bucketing=true;
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.txn.manager=org.apache.hadoop.hive.ql.lockmgr.DbTxnManager;
set hive.compactor.initiator.on=true; -- 表合并开启
set hive.compactor.worker.threads=1; -- 表合并线程必须为一
set hive.auto.convert.join=false; -- 关闭 mapjoin
set hive.merge.cardinality.check=false; -- 关闭检查数据列的基数(列值的差异性)
set mapreduce.job.reduces=4;

6、具体代码

drop table if exists zhou.hive_zipper_order;
create table zhou.hive_zipper_order(
	order_id bigint,
	user_id bigint,
	order_modify_dt timestamp,
	order_money decimal(10,2),
	current_status int
)
row format delimited 
fields terminated by ',';
--导入f F的数据至普通表hive_zipper_order中
load data local inpath '/root/file/log/order_record.log'
overwrite into table zhou.hive_zipper_order;

--创建拉链表hive_zipper_pc_order	✔
drop table if exists zhou.hive_zipper_pc_order;
create table zhou.hive_zipper_pc_order(
	order_id bigint,
	user_id bigint,
	order_create_dt timestamp,
	order_modify_dt timestamp,
	order_money decimal(10,2),
	current_status int
)
partitioned by(year int,month int,day int)
clustered by(order_create_dt) into 4 buckets
row format delimited
	fields terminated by ','
stored as orc
tblproperties("transactional"="true");

--操作历史全量数据用动态分区	✔
set hive.support.concurrency=true;
set hive.enforce.bucketing=true;
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.txn.manager=org.apache.hadoop.hive.ql.lockmgr.DbTxnManager;
set hive.compactor.initiator.on=true;
set hive.compactor.worker.threads=1;
set hive.auto.convert.join=false;
set hive.merge.cardinality.check=false;
set mapreduce.job.reduces=4;

--开启动态分区,一次性挂载至拉链表hive_zipper_pc_order中	✔
with zip_src as (
	select order_id,user_id,order_money,
		min(order_modify_dt) as order_create_dt,
		max(order_modify_dt) as order_modify_dt,
		max(current_status) as current_status
	from zhou.hive_zipper_order
	group by order_id,user_id,order_money
)
insert overwrite table zhou.hive_zipper_pc_order partition(year,month,day)
select
	order_id,
	user_id,
	order_create_dt,
	order_modify_dt,
	order_money,
	current_status,
	year(order_create_dt) as year,
	month(order_create_dt) as month,
	day(order_create_dt) as day
from zip_src;

-- 拉链表查询	✔
set hive.txn.manager=org.apache.hadoop.hive.ql.lockmgr.DbTxnManager;
set hive.support.concurrency=true;
select * from zhou.hive_zipper_pc_order
where to_date(order_modify_dt)='2021-02-04'
order by order_modify_dt desc;

--之后每天,增量添加【在原表处新增】
load data local inpath '/root/file/log/order_record_2021_02_05.log'
overwrite into table zhou.hive_zipper_order;

--拉链处理增量数据(新增新数据,修改旧数据)	✔
merge into zhou.hive_zipper_pc_order as O
using (
	select 
		order_id,
		user_id,
		order_create_dt,
		order_modify_dt,
		order_money,
		current_status,
		year(order_create_dt) as year,
		month(order_create_dt) as month,
		day(order_create_dt) as day
	from (
		select order_id,user_id,order_money,
			min(order_modify_dt) as order_create_dt,
			max(order_modify_dt) as order_modify_dt,
			max(current_status) as current_status
		from zhou.hive_zipper_order
		--where to_date(order_modify_dt)='2021-02-05'
		group by order_id,user_id,order_money
	)T
) as H
on O.order_id=H.order_id
when matched then 
update set order_modify_dt=H.order_modify_dt,current_status=H.current_status
when not matched then 
insert values(H.order_id,H.user_id,H.order_create_dt,H.order_modify_dt,H.order_money,H.current_status,H.year,H.month,H.day);

--验证拉链结果	✔
select * from zhou.hive_zipper_pc_order
where to_date(order_modify_dt)>to_date(order_create_dt);

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/798073.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Unity 优化合集

1️⃣ 贴图优化 1. Read/Write Enable 这个属性勾选后允许你在运行时读取和写入纹理数据&#xff0c;这对于需要实时生成内容或者需要动态修改纹理的场合非常有用但在大部分情况下这是不必要的。如果打开这个属性&#xff0c;会使运行时贴图大小翻倍&#xff0c;内存中会额外…

缓存与分布式锁

一、缓存 1、缓存使用 为了系统性能的提升&#xff0c;我们一般都会将部分数据放入缓存中&#xff0c;加速访问。 适合放入缓存的数据有&#xff1a; 即时性、数据一致性要求不高的&#xff1b;访问量大且更新频率不高的数据。 在开发中&#xff0c;凡是放入缓存中的数据我们都…

Git 命令行快速入门

前言 &#xff08;1&#xff09;新手个人建议使用TortoiseGit这类图形化界面来上手学习。 &#xff08;2&#xff09;如果一定需要用命令行进行操作&#xff0c;可以按照B站&#xff1a;程式与网页开发者必备技能&#xff01;Git 和 GitHub 零基础快速上手&#xff0c;轻松掌握…

构造与操作链栈

归纳编程学习的感悟, 记录奋斗路上的点滴, 希望能帮到一样刻苦的你! 如有不足欢迎指正! 共同学习交流! 🌎欢迎各位→点赞 👍+ 收藏⭐ + 留言​📝心态决定高度,细节决定成败! 链栈是数据结构中栈的一种实现方式,它利用链表(通常是单链表)来存储栈中的元…

【触摸屏】【红十字会学习系统】功能模块:视频 + AI拍照合成

项目背景 提升公众急救能力&#xff1a;确保每个人都能在紧急情况下采取正确的急救措施&#xff0c;减少伤害&#xff0c;挽救生命。培养人道主义价值观&#xff1a;通过教育和培训&#xff0c;传播红十字精神&#xff0c;促进社会对弱势群体的关注与支持。建立社区响应网络&a…

1. InternLM - 入门岛

第1关 Linux 基础知识 1. 完成SSH连接与端口映射并运行hello_world.py SSH连接配置 # wsl2中生成密钥对&#xff08;~/.ssh/id_rsa, ~/.ssh/id_rsa.pub&#xff09; ssh-keygen -t rsa# 将id_rsa.pub在internStudio作为公钥导入SSH登录 $ ssh -p 38871 rootssh.intern-ai.o…

5.SpringBoot核心源码-启动类源码分析

目录 概述技巧spring boot 如何启动应用程序run方法里面核心逻辑 SpringApplicaiton.run(xxx.class,args)结束 概述 SpringBoot核心源码-启动类源码分析 技巧 如何给外部源码加注释&#xff0c;想要在源码中添加自己的注释&#xff0c;会弹出 file is read only&#xff0c;代…

Java核心技术【二十二】Java的I/O流处理:深入文件读写操作、缓冲流、序列化与NIO

Java的I/O流处理&#xff1a;深入文件读写操作、缓冲流、序列化 在Java编程中&#xff0c;I/O流是处理输入输出操作的基础&#xff0c;特别是在文件读写、网络通信等领域。本文将在前文的基础上&#xff0c;进一步探讨缓冲流、序列化以及NIO&#xff08;New I/O&#xff09;在…

从0开始的STM32HAL库学习2

外部中断(HAL库GPIO讲解) 今天我们会详细地学习STM32CubeMX配置外部中断&#xff0c;并且讲解HAL库的GPIO的各种函数。 准备工作&#xff1a; 1、STM32开发板&#xff08;我的是STM32F103C8T6&#xff09; 2、STM32CubeMx软件、 IDE&#xff1a; Keil软件 3、STM32F1xx/ST…

01- 收入数据集【Pytorch入门实战】

目录 一、机器学习基础 二、实战例子 1.数据集分析 2.实战训练 3.总结 三、参考资料 一、机器学习基础 为了解决这个问题&#xff0c;人们想到数据驱动方法&#xff0c;也就是让计算机从现有的大量的带标签图片电学习规律&#xff0c;一旦计算机学习到了其中的规律&…

sip协议栈简介

SIP协议栈简介 SIP协议栈流程 数据链路层&#xff1a;当SIP消息从网络中传输到达TCP/IP协议栈时&#xff0c;首先被接收到的是数据链路层的数据帧。数据链路层会对数据帧进行解封装&#xff0c;得到网络层的IP数据报。 网络层&#xff1a;网络层会对IP数据报进行解析&#xf…

1.27、基于径向基神经网络的曲线拟合(matlab)

1、基于径向基神经网络的曲线拟合简介及原理 1)原理简介 基于径向基神经网络(Radial Basis Function Neural Network, RBFNN)的曲线拟合是一种常用的非线性拟合方法,通过在输入空间中使用径向基函数对数据进行处理,实现对非线性关系的拟合。 RBFNN的基本原理是将输入空…

Java基础(十九):集合框架

目录 一、Java集合框架体系二、Collection接口及方法1、添加2、判断3、删除4、其它 三、Iterator(迭代器)接口1、Iterator接口2、迭代器的执行原理3、foreach循环 四、Collection子接口1&#xff1a;List1、List接口特点2、List接口方法3、List接口主要实现类&#xff1a;Array…

【Hive SQL 每日一题】在线峰值人数计算

文章目录 测试数据需求说明需求实现 测试数据 -- 创建 user_activity 表 DROP TABLE IF EXISTS user_activity ; CREATE TABLE user_activity (user_id STRING,activity_start TIMESTAMP,activity_end TIMESTAMP );-- 插入数据 INSERT INTO user_activity VALUES (user1, 2024…

算效最高的智算中心上线,天府智算为AI产业带来哪些启示?

四川简阳&#xff0c;地处川中、控扼巴峡&#xff0c;自古乃成渝、川鄂之间的交通重镇&#xff0c;素有“天府雄州”之美誉。 步入数字经济时代&#xff0c;“天府雄州”得天独厚的地理位置再次彰显出巨大的战略价值。简阳市成为成渝算力枢纽的天府数据中心集群关键布局点&…

element ui ts table重置排序

#日常# 今天带的实习生&#xff0c;在遇到开发过程中&#xff0c;遇到了element ui table 每次查询的时候都需要重置排序方式&#xff0c;而且多个排序是由前端排序。 <el-table :data"tableData" ref"restTable"> </<el-table> <script…

bi项目笔记

1.bi是什么 bi项目就是商业智能系统&#xff0c;也就是数据可视画、报表可视化系统&#xff0c;如下图的就是bi项目了 2.技术栈

深入了解 MySQL 的 EXPLAIN 命令

一、什么是 EXPLAIN 命令&#xff1f; EXPLAIN 命令用于显示 MySQL 如何执行某个 SQL 语句&#xff0c;尤其是 SELECT 语句。通过 EXPLAIN 命令&#xff0c;可以看到查询在实际执行前的执行计划&#xff0c;这对于优化查询性能至关重要。 二、EXPLAIN 的基本用法 要使用 EXP…

什么时候要用弗洛伊德算法

分析一下题目&#xff0c;我们看到数据量只有一百&#xff0c;这个时候我们就要注意是否是要用弗洛伊德算法&#xff0c;然后接着我们还需要枚举每一种情况&#xff0c;我们可以用到next_permutation这个方法 #include<bits/stdc.h> using namespace std;const int N 10…

matlab R2016b安装cplex12.6,测试时cplex出现出现内部错误的解决方法

问题场景 网上搜索matlabyalmipcplex的安装教程&#xff0c;跟着步骤操作即可&#xff0c;假如都安装好了&#xff0c;在matlab中测试安装是否成功&#xff0c;出现以下问题&#xff1a; 1、matlab中设置路径中添加了yalmip和cplex路径&#xff0c;在命令窗口中输入yalmiptest…