目录
一、什么是DDL?
二、什么是DDL同步?
三、DDL同步的痛点
1、缺少自动DDL同步机制
2、缺少DDL变更监测预警
四、解决方案
五、应用场景及案例
案例一
案例二
案例三
在现代数据管理中,数据库的结构变更频繁且不可避免,特别是在复杂的数据处理任务中,如何有效地管理和同步DDL变更成为了重要挑战。DDL(Data Definition Language)作为定义和修改数据库架构的关键语言,影响着数据管理和应用系统的稳定性和效率。本文将深入探讨DDL同步的问题和解决方案,帮助读者更好地理解和应对这一技术领域的挑战。
一、什么是DDL?
在数据库管理系统中,DDL(Data Definition Language)是一组用于定义和修改数据库架构的语言。
DDL的常见语句包括:
- CREATE:用于创建新的数据库对象。
- ALTER:用于修改现有数据库对象的结构。
- DROP:用于删除数据库对象。
- TRUNCATE:用于快速删除表中的所有行,但保留表结构。
DDL是数据库管理员和开发者用来设计和维护数据库架构的关键工具。
二、什么是DDL同步?
开发者在进行数据处理任务时,一旦源数据库的表结构发生变化(DDL变更),而目标数据库没有及时进行同步,就会导致任务执行失败。DDL同步就是用来解决这一问题,它会自动识别源表结构变化,并及时更新到目标数据库中,保障数据同步任务顺畅进行。
三、DDL同步的痛点
核心问题:数据来源端DDL发生变更,无法自动同步到目标端数据库。
定时任务中常见的DDL同步问题可以总结为以下几点。
1、缺少自动DDL同步机制
当源表结构发生变化时,开发人员需要手动将源表结构变更到目标系统,效率很低。
开发人员在搭建好数据同步任务之后,只要来源端的表结构发生变化,就不得不中断手头的工作,去目标表里手动更新这些变化,再重新对字段进行映射,否则任务就会一直停滞,费时费力。这不仅让人头疼,还特别耗时间。苦于没有DDL自动同步的工具,开发人员常常半夜被叫起来,熬夜修复任务,这不仅给开发人员带来极大负担,而且大大降低了任务效率。
因此开发人员迫切希望有一个自动化的DDL同步工具,这样一旦源表有更新,系统就能自动搞定目标表的同步,省去了手动操作的麻烦。
2、缺少DDL变更监测预警
目前的ETL工具缺乏对源表结构变化的监测和提醒,运维起来非常麻烦。
例如,IT人员在进行数据处理时,会从多个不同的部门获取数据,但是上游部门对表结构进行更改不会告知IT人员,业务系统的修改无法及时的传递到数仓侧,经常出现因数据无法正常更新而报错的情况。IT人员需要一个智能监测DDL变化的工具,在监测到源表结构变更时自动通知并预警,能够帮助IT人员从耗时的debug中解放出来,大大降低运维难度。
四、解决方案及案例
为了解决上述问题,帮助开发人员提高工作效率,保证数据的一致性和完整性,FineDataLink 4.1.5版本起新增支持DDL同步 & 字段变更智能感知,能够在监测到源端结构变化后向用户发出提醒,帮助用户及时介入处理。同时用户可以直接在任务中用可视化的方式对目标表进行字段处理,更新目标表结构,减少了代码量。
功能详情请查阅:定时任务DDL同步
接下来通过3个案例为您提供具体参考:案例一
- 业务场景:零售商和门店系统数据进行对接,每晚歇业后门店会上传当日数据到系统上,此时需要有专人来监控系统运行情况。一旦在夜里发现由于上游来源表结构变更导致全量数据更新卡住,就需要IT人员马上解决。企业希望基于来源表结构变更,能够自动停止数据更新任务,并进行预警。
- 解决方案:使用FineDataLink中的「源表结构变化监测」功能,节点每次执行时会自动获取来源端表结构,并与当前节点配置的表结构进行比对,判断出源表结构变化。当发现表字段变化时,FDL会自动发送通知,便于运维人员及时调整。
案例二
- 业务场景:业务人员在进行数据分析时,需要从不同的表里取其中部分构成中间表,然后用自动建表将中间表落库。最开始的业务诉求只需要其中部分字段,随着业务的发展,中间表需要的字段发生变化,可能需要再从其他表继续关联新增字段。如果每一次都手动调整,整个工作流程会非常繁琐,希望能有快速更新字段映射的机制。
- 解决方案:使用FineDataLink提供的「更新字段映射」功能。来源表结构变化时,FDL会提示用户更新字段映射。点击「更新字段映射」即可查看到增删改字段的变化情况,点击确认按钮即可根据来源表字段变化更新字段映射,无需再进行复杂的手动操作。
案例三
- 业务场景:业务人员在进行简道云数据下云,将数据同步到CRM的API时,使用到了过程转换算子和输出算子。当过程处理算子的输出流发生变化后,输出算子内的字段映射没有更新,此时会出现字段映射表不正确,需要重新获取字段映射的情况,业务人员希望在映射配置发生变动时能快速更新已存在目标表字段。
- 解决方案:使用FineDataLink提供的「更新目标表」功能。若来源表字段相较之前有变化,开发人员可以点击「更新目标表」对目标表进行调整,支持选择已有目标表字段或手动输入新字段,确认后即可自动生成相应的DDL语句并执行,操作方便的同时兼具拓展性。
在实际应用中,有效的DDL管理可以确保数据库结构与业务需求的紧密匹配,提高系统的响应速度和运行效率。业务场景中,FineDataLink体现出以下价值:
- 功能完善,能应对大部分DDL变更需求场景。
- 操作简单,无需大量代码操作,用户可以很快上手。
- 运维方便,自动监测和预警,大大降低维护成本。
帆软FineDataLink——中国领先的低代码/高时效数据治理工具,能过为企业提供一站式的数据服务,通过快速连接、高时效融合多种数据,提供低代码Data API敏捷发布平台,帮助企业解决数据孤岛难题,有效提升企业数据价值。
了解更多数据仓库与数据集成关干货内容请关注>>>FineDataLink官网
免费试用、获取更多信息,点击了解更多>>>体验FDL功能
往期推荐:
数仓拉链表(原理、设计思路及在FDL中的实现)-CSDN博客
业务场景中的数仓调度_kettle数仓各层调度-CSDN博客
金蝶API取数+JSON解析,FDL助力高效数据处理-CSDN博客