线性代数|机器学习-P22逐步最小化一个函数

文章目录

  • 1. 概述
  • 2. 泰勒公式
  • 3. 雅可比矩阵
  • 4. 经典牛顿法
    • 4.1 经典牛顿法理论
    • 4.2 牛顿迭代法解求方程根
    • 4.3 牛顿迭代法解求方程根 Python
  • 5. 梯度下降和经典牛顿法
    • 5.1 线搜索方法
    • 5.2 经典牛顿法
  • 6. 凸优化问题
    • 6.1 约束问题
    • 6.1 凸集组合

Mit麻省理工教授视频如下:逐步最小化一个函数

1. 概述

主要讲的是无约束情况下的最小值问题。涉及到如下:

  • 矩阵求导
  • 泰勒公式,函数到向量的转换
  • 梯度下降
  • 牛顿法梯度下降

2. 泰勒公式

我们之前在高等数学中学过关于f(x)的泰勒展开如下:
定义: lim ⁡ x → a h k ( x ) = 0 \lim\limits_{x\to a}h_k(x)=0 xalimhk(x)=0
f ( x ) = f ( a ) + f ′ ( a ) ( x − a ) + f ′ ′ ( a ) 2 ! ( x − a ) 2 + ⋯ + f ( k ) ( a ) k ! ( x − a ) k + h k ( x ) ( x − a ) k \begin{equation} f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2+\cdots+\frac{f^{(k)}(a)}{k!}(x-a)^k+h_k(x)(x-a)^k \end{equation} f(x)=f(a)+f(a)(xa)+2!f′′(a)(xa)2++k!f(k)(a)(xa)k+hk(x)(xa)k

  • 那么我们只提取二次项, x + Δ x → x ; x → a x+\Delta x \rightarrow x;x\rightarrow a x+Δxx;xa 可得如下:
    f ( x + Δ x ) ≈ f ( x ) + f ′ ( x ) Δ x + f ′ ′ ( x ) 2 ! Δ x 2 \begin{equation} f(x+\Delta x)\approx f(x)+f'(x)\Delta x+\frac{f''(x)}{2!}\Delta x^2 \end{equation} f(x+Δx)f(x)+f(x)Δx+2!f′′(x)Δx2
  • 上面的公式中x为标量,现在我们需要用到向量 x
  • a , b a,b a,b均为1维列向量,S为对称矩阵时,我们可得得到如下:
    a T b = c , x T S x = d → c , d 均为标量 \begin{equation} a^Tb=c,x^TSx=d\rightarrow c,d均为标量 \end{equation} aTb=c,xTSx=dc,d均为标量
  • 定义如下:
    x = [ x 1 x 2 ⋯ x n ] T , f = [ f 1 f 2 ⋯ f n ] T \begin{equation} x=\begin{bmatrix}x_1&x_2&\cdots&x_n\end{bmatrix}^T,f=\begin{bmatrix}f_1&f_2&\cdots&f_n\end{bmatrix}^T \end{equation} x=[x1x2xn]T,f=[f1f2fn]T
    f ′ ( x ) = ∇ F = [ ∂ f ∂ x 1 ∂ f ∂ x 1 ⋯ ∂ f ∂ x n ] T → f ′ ( x ) Δ x = ( Δ x ) T ∇ F ( x ) \begin{equation} f'(x)=\nabla F=\begin{bmatrix}\frac{\partial f}{\partial x_1}&\frac{\partial f}{\partial x_1}&\cdots&\frac{\partial f}{\partial x_n}\end{bmatrix}^T \rightarrow f'(x)\Delta x=(\Delta x)^T \nabla F(x) \end{equation} f(x)=F=[x1fx1fxnf]Tf(x)Δx=(Δx)TF(x)
  • H j k H_{jk} Hjkhessian matrix具有对称性
    f ′ ′ ( x ) = H j k = ∂ 2 F ∂ x j ⋅ ∂ x k → f ′ ′ ( x ) 2 ! Δ x 2 = 1 2 ( Δ x ) T H j k ( Δ x ) \begin{equation} f''(x)=H_{jk}=\frac{\partial^2F}{\partial x_j\cdot \partial x_k}\rightarrow \frac{f''(x)}{2!}\Delta x^2=\frac{1}{2}(\Delta x)^T H_{jk}(\Delta x) \end{equation} f′′(x)=Hjk=xjxk2F2!f′′(x)Δx2=21(Δx)THjk(Δx)
  • 整理上述公式可得:
    F ( x + Δ x ) ≈ F ( x ) + ( Δ x ) T ∇ F ( x ) + 1 2 ( Δ x ) T H j k ( Δ x ) \begin{equation} F(x+\Delta x)\approx F(x)+(\Delta x)^T \nabla F(x)+\frac{1}{2}(\Delta x)^T H_{jk}(\Delta x) \end{equation} F(x+Δx)F(x)+(Δx)TF(x)+21(Δx)THjk(Δx)

3. 雅可比矩阵

假设有一个m维度向量函数 f ( x ) = [ f 1 ( x ) f 2 ( x ) ⋯ f m ( x ) ] T f(x)=\begin{bmatrix}f_1(x)&f_2(x)&\cdots f_m(x)\end{bmatrix}^T f(x)=[f1(x)f2(x)fm(x)]T[列向量],其中
x = [ x 1 x 2 ⋯ x n ] T x=\begin{bmatrix}x_1&x_2&\cdots&x_n\end{bmatrix}^T x=[x1x2xn]T是一个n维输入向量,雅可比矩阵J是一个 m × n m\times n m×n的矩阵,其元素由函数的偏导数组成:雅可比矩阵第i行第j列表示的是 f i ( x ) f_i(x) fi(x) x i x_i xi的偏导
J i j = ∂ f i ( x ) ∂ x j \begin{equation} J_{ij}=\frac{\partial f_i(x)}{\partial x_j} \end{equation} Jij=xjfi(x)

  • 本质上就是函数值 f i ( x ) f_i(x) fi(x) x i x_i xi的每个元素求导:

  • 第一步假设 f i ( x ) f_i(x) fi(x)是常数, ∂ f i ( x ) ∂ X \frac{\partial f_i(x)}{\partial X} Xfi(x)为分子布局,遵循标量不变,向量拉伸原则

  • XY拉伸术,分子布局,X横向拉,Y纵向拉,可得如下:
    ∂ f i ( x ) ∂ X = [ ∂ f i ( x ) ∂ x 1 ∂ f i ( x ) ∂ x 2 ⋯ ∂ f i ( x ) ∂ x n ] \begin{equation} \frac{\partial f_i(x)}{\partial X}= \begin{bmatrix} \frac{\partial f_i(x)}{\partial x_1}& \frac{\partial f_i(x)}{\partial x_2}& \cdots& \frac{\partial f_i(x)}{\partial x_n} \end{bmatrix} \end{equation} Xfi(x)=[x1fi(x)x2fi(x)xnfi(x)]

  • 第二步假设 f ( x ) f(x) f(x)为向量, ∂ f ( x ) ∂ X \frac{\partial f(x)}{\partial X} Xf(x)为分子布局,遵循标量不变,向量拉伸原则

  • XY拉伸术,分子布局,X横向拉,Y 纵向拉,可得如下:
    J = [ ∂ f 1 ( x ) ∂ x 1 ∂ f 1 ( x ) ∂ x 2 ⋯ ∂ f 1 ( x ) ∂ x n ∂ f 2 ( x ) ∂ x 1 ∂ f 2 ( x ) ∂ x 2 ⋯ ∂ f 2 ( x ) ∂ x n ⋮ ⋮ ⋯ ⋮   ∂ f m ( x ) ∂ x 1 ∂ f m ( x ) ∂ x 2 ⋯ ∂ f m ( x ) ∂ x n ] \begin{equation} \mathrm{J}= \begin{bmatrix} \frac{\partial f_1(x)}{\partial x_1}&\frac{\partial f_1(x)}{\partial x_2}&\cdots&\frac{\partial f_1(x)}{\partial x_n}\\\\ \frac{\partial f_2(x)}{\partial x_1}&\frac{\partial f_2(x)}{\partial x_2}&\cdots&\frac{\partial f_2(x)}{\partial x_n} \\\\ \vdots&\vdots&\cdots&\vdots\\\\\ \frac{\partial f_m(x)}{\partial x_1}&\frac{\partial f_m(x)}{\partial x_2}&\cdots& \frac{\partial f_m(x)}{\partial x_n} \end{bmatrix} \end{equation} J= x1f1(x)x1f2(x) x1fm(x)x2f1(x)x2f2(x)x2fm(x)xnf1(x)xnf2(x)xnfm(x)

  • 泰勒公式1阶展开可得:
    f ( x + Δ x ) = f ( x ) + f ′ ( x ) Δ x \begin{equation} f(x+\Delta x)=f(x)+f'(x)\Delta x \end{equation} f(x+Δx)=f(x)+f(x)Δx

  • 转换成雅可比矩阵可得:
    f ( x + Δ x ) = f ( x ) + J j k Δ x ; J j k = ∂ f j ( x ) ∂ x k \begin{equation} f(x+\Delta x)=f(x)+\mathrm{J}_{jk}\Delta x;\mathrm{J}_{jk}=\frac{\partial f_j(x)}{\partial x_k} \end{equation} f(x+Δx)=f(x)+JjkΔx;Jjk=xkfj(x)

4. 经典牛顿法

4.1 经典牛顿法理论

我们已经知道了函数的二阶泰勒展开表示如下:
F ( x + Δ x ) ≈ F ( x ) + ( Δ x ) T ∇ F ( x ) + 1 2 ( Δ x ) T H j k ( Δ x ) \begin{equation} F(x+\Delta x)\approx F(x)+(\Delta x)^T \nabla F(x)+\frac{1}{2}(\Delta x)^T H_{jk}(\Delta x) \end{equation} F(x+Δx)F(x)+(Δx)TF(x)+21(Δx)THjk(Δx)

  • 一般如果在 x ∗ x^* x处取得最小值,那么其导数为0;现在我们求导可得:
    d F ( x ) d Δ x = 0 ; ( Δ x ) T ∇ F ( x ) d Δ x = ∇ F ( x ) ; d 1 2 ( Δ x ) T H j k ( Δ x ) d Δ x = H j k Δ x ; \begin{equation} \frac{\mathrm{d}F(x)}{\mathrm{d}\Delta x}=0;\frac{(\Delta x)^T \nabla F(x)}{\mathrm{d}\Delta x}=\nabla F(x);\frac{\mathrm{d}\frac{1}{2}(\Delta x)^T H_{jk}(\Delta x)}{\mathrm{d}\Delta x}=H_{jk}\Delta x; \end{equation} dΔxdF(x)=0;dΔx(Δx)TF(x)=F(x);dΔxd21(Δx)THjk(Δx)=HjkΔx;
    d F ( x + Δ x ) d Δ x = 0 + ∇ F ( x ) + H j k Δ x = 0 \begin{equation} \frac{\mathrm{d}F(x+\Delta x)}{\mathrm{d}\Delta x}=0+\nabla F(x)+H_{jk}\Delta x=0 \end{equation} dΔxdF(x+Δx)=0+F(x)+HjkΔx=0
  • H j k = J j k H_{jk}=\mathrm{J}_{jk} Hjk=Jjk可逆时, Δ x = x k + 1 − x k \Delta x=x_{k+1}-x_k Δx=xk+1xk可得:
    − [ H j k ] − 1 ∇ F ( x ) = x k + 1 − x k → x k + 1 = x k − [ J j k ] − 1 ∇ F ( x ) \begin{equation} -[H_{jk}]^{-1}\nabla F(x)=x_{k+1}-x_k\rightarrow x_{k+1}=x_k-[\mathrm{J}_{jk}]^{-1}\nabla F(x) \end{equation} [Hjk]1F(x)=xk+1xkxk+1=xk[Jjk]1F(x)
  • 我们定义 ∇ F ( x ) = f ( x k ) \nabla F(x)=f(x_k) F(x)=f(xk), J j k = J x k \mathrm{J}_{jk}=\mathrm{J}_{x_k} Jjk=Jxk
    x k + 1 = x k − [ J x k ] − 1 f ( x k ) \begin{equation} x_{k+1}=x_k-[\mathrm{J}_{x_k}]^{-1}f(x_k) \end{equation} xk+1=xk[Jxk]1f(xk)

4.2 牛顿迭代法解求方程根

  • 已知: f ( x ) = x 2 − 9 = 0 f(x)=x^2-9=0 f(x)=x29=0,用牛顿迭代的方法求解方程的根
  • 根据迭代公式可得: f ′ ( x ) = J x k = 2 x , f ( x k ) = x k 2 − 9 f'(x)=\mathrm{J}_{x_k}=2x,f(x_k)=x_k^2-9 f(x)=Jxk=2x,f(xk)=xk29
    x k + 1 = x k − [ J x k ] − 1 f ( x k ) → x k + 1 = x k − f ( x k ) J x k \begin{equation} x_{k+1}=x_k-[\mathrm{J}_{x_k}]^{-1}f(x_k)\rightarrow x_{k+1}=x_k-\frac{f(x_k)}{\mathrm{J}_{x_k}} \end{equation} xk+1=xk[Jxk]1f(xk)xk+1=xkJxkf(xk)
  • 整理可得:
    x k + 1 = x k − x k 2 − 9 2 x k = 1 2 x k + 9 2 x k \begin{equation} x_{k+1}=x_k-\frac{x_k^2-9}{2x_k}=\frac{1}{2}x_k+\frac{9}{2x_k} \end{equation} xk+1=xk2xkxk29=21xk+2xk9
  • 收敛依据:
    判断新的近似值 x k + 1 x_{k+1} xk+1与当前值 x k x_k xk之间的差距是否小于某个值 ϵ = 1 0 − 10 \epsilon=10^{-10} ϵ=1010,如果小于该值则认为收敛,否则继续迭代。
  • 我们先设置初始值 x 0 = 2 x_0=2 x0=2可得 x 1 x_1 x1
    x 1 = 1 2 x 0 + 9 2 x 0 = 3.25 ; \begin{equation} x_{1}=\frac{1}{2}x_0+\frac{9}{2x_0}=3.25; \end{equation} x1=21x0+2x09=3.25;
  • 继续迭代得 x 2 x_2 x2
    x 2 = 1 2 x 1 + 9 2 x 1 = 3.0096153846153846 ; \begin{equation} x_{2}=\frac{1}{2}x_1+\frac{9}{2x_1}=3.0096153846153846; \end{equation} x2=21x1+2x19=3.0096153846153846;
  • 继续迭代得 x 3 x_3 x3
    x 3 = 1 2 x 2 + 9 2 x 2 = 3.000015360039322 ; \begin{equation} x_{3}=\frac{1}{2}x_2+\frac{9}{2x_2}=3.000015360039322; \end{equation} x3=21x2+2x29=3.000015360039322
  • 继续迭代得 x 4 x_4 x4
    x 4 = 1 2 x 3 + 9 2 x 3 = 3.0000000000393214 ; \begin{equation} x_{4}=\frac{1}{2}x_3+\frac{9}{2x_3}=3.0000000000393214; \end{equation} x4=21x3+2x39=3.0000000000393214
  • 可得 x 2 − 9 = 0 x^2-9=0 x29=0的解为 x 1 ∗ = 3 x_1^*=3 x1=3,同理初始化为 x 0 = − 2 x_0=-2 x0=2 可得 x 2 ∗ = − 3 x_2^*=-3 x2=3

4.3 牛顿迭代法解求方程根 Python

  • 代码: Python代码如下:
def newton_raphson(f, f_prime, x0, tol=1e-10, max_iter=100):
    x = x0
    for i in range(max_iter):
        fx = f(x)
        fpx = f_prime(x)

        # Newton-Raphson iteration
        x_new = x - fx / fpx

        print(f"Iteration {i + 1}: x = {x_new}")

        if abs(x_new - x) < tol:
            return x_new
        x = x_new

    raise ValueError("Newton-Raphson method did not converge")


# Define the function and its first derivative
f = lambda x: x ** 2 - 9
f_prime = lambda x: 2 * x

# Initial guesses
initial_guesses = [2, -2]

# Find the roots
for x0 in initial_guesses:
    root = newton_raphson(f, f_prime, x0)
    print(f"The root starting from {x0} is: {root}")
  • 运行结果:
Iteration 1: x = 3.25
Iteration 2: x = 3.0096153846153846
Iteration 3: x = 3.000015360039322
Iteration 4: x = 3.0000000000393214
Iteration 5: x = 3.0
The root starting from 2 is: 3.0
Iteration 1: x = -3.25
Iteration 2: x = -3.0096153846153846
Iteration 3: x = -3.000015360039322
Iteration 4: x = -3.0000000000393214
Iteration 5: x = -3.0
The root starting from -2 is: -3.0

5. 梯度下降和经典牛顿法

对于无约束问题的梯度下降,我们一般有两种方法:

5.1 线搜索方法

运用泰勒一阶信息,迭代方向为负梯度方向:

  • 迭代方程:
    x k + 1 = x k + α k p k \begin{equation} x_{k+1}=x_k +\alpha_k p_k \end{equation} xk+1=xk+αkpk
  • 方向 p k p_k pk:负梯度方向 − ∇ F -\nabla F F
  • 步长: α k = s k \alpha_k=s_k αk=sk,深度学习中叫学习率
  • 更新后的方程如下:
    x k + 1 = x k − s k ∇ F \begin{equation} x_{k+1}=x_k -s_k \nabla F \end{equation} xk+1=xkskF

5.2 经典牛顿法

运用泰勒二阶信息,迭代方向为牛顿方向:迭代步长为 α 1 = 1 \alpha_1=1 α1=1

  • 迭代方程为,hessian matrix-> H j k H_{jk} Hjk可逆:
    x k + 1 = x k − [ H j k ] − 1 ∇ F ( x ) \begin{equation} x_{k+1}=x_k-[H_{jk}]^{-1}\nabla F(x) \end{equation} xk+1=xk[Hjk]1F(x)
  • 经典牛顿法为二次性收敛,速度非常快,具体分析请参考如下博客
    [优化算法]经典牛顿法

6. 凸优化问题

6.1 约束问题

我们定义凸函数为 f ( x ) f(x) f(x),凸集为 K \mathrm{K} K,我们的目的是为了求得凸函数 f ( x ) f(x) f(x)的最小值
min ⁡ x ∈ K f ( x ) , K : A x = b \begin{equation} \min\limits_{x\in K} f(x), \mathrm{K}:Ax=b \end{equation} xKminf(x)K:Ax=b

  • f ( x ) f(x) f(x)表示的是所有在碗内部上的和碗内表面上的点
  • 求的是在碗内表面的上的最小值,碗的形状就是约束条件 A x = b Ax=b Ax=b
    在这里插入图片描述

6.1 凸集组合

  • 如果 x 1 , x 2 x_1,x_2 x1,x2均在凸集里面,则由 x 1 , x 2 x_1,x_2 x1,x2组成的直线L在凸集里面
    在这里插入图片描述
  • 如果 x 1 , x 2 x_1,x_2 x1,x2分别在不同的凸集里面,则由 x 1 , x 2 x_1,x_2 x1,x2组成的直线L不在凸集里面
    在这里插入图片描述
  • 小结:合并图集里面组合的直线不在凸集里面。
  • 如果 x 1 , x 2 x_1,x_2 x1,x2都在不同的凸集里面的交集里面,则由 x 1 , x 2 x_1,x_2 x1,x2组成的直线L在凸集中
    在这里插入图片描述
  • 假设我们有两个凸函数 F 1 ( x ) , F 2 ( x ) F_1(x),F_2(x) F1(x),F2(x),我们定义如下:
    min ⁡ ( x ) = min ⁡ [ F 1 ( x ) , F 2 ( x ) ] ; max ⁡ ( x ) = max ⁡ [ F 1 ( x ) , F 2 ( x ) ] ; \begin{equation} \min(x)=\min[F_1(x),F_2(x)];\max(x)=\max[F_1(x),F_2(x)]; \end{equation} min(x)=min[F1(x),F2(x)];max(x)=max[F1(x),F2(x)];
  • 如果两个凸集相交,那么相交的凸集最大值,最小值如下:
    min ⁡ ( x ) = min ⁡ [ F 1 ( x ) , F 2 ( x ) ] − > 非凸; max ⁡ ( x ) = max ⁡ [ F 1 ( x ) , F 2 ( x ) ] − > 凸 ; \begin{equation} \min(x)=\min[F_1(x),F_2(x)]-> 非凸;\max(x)=\max[F_1(x),F_2(x)]->凸; \end{equation} min(x)=min[F1(x),F2(x)]>非凸;max(x)=max[F1(x),F2(x)]>;
  • 凸函数判断
    d 2 f ( x ) d x 2 ≥ 0 \begin{equation} \frac{\mathrm{d}^2f(x)}{\mathrm{d}x^2}\ge 0 \end{equation} dx2d2f(x)0

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/791263.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

初识C++语言(1)

目录 C语言简介 C 语言概述 C 语言的特点 语言简洁紧凑&#xff0c;使用灵活方便 运算符丰富 数据结构丰富 结构化语言 生成的代码质量高 可移植性强 C程序结构 C语言系统的使用 一.启动Dev-C 二、新建源程序 三…

华为ensp实现防火墙的区域管理与用户认证

实验环境 基于该总公司内网&#xff0c;实现图片所在要求 后文配置请以本图为准 接口配置与网卡配置 1、创建vlan 2、防火墙g0/0/0与云页面登录 登录admin,密码Admin123&#xff0c;自行更改新密码 更改g0/0/0口ip&#xff0c;敲下命令service-manage all permit 网卡配置…

什么是平值、实值、虚值期权合约?有哪些区别?

今天带你了解什么是平值、实值、虚值期权合约&#xff1f;有哪些区别&#xff1f;期权按执行价格与标的物市价的关系可分为实值期权、平值期权和虚值期权。 平值期权、实值期权和虚值期权是描述期权合约相对于标的资产当前价格的位置的术语&#xff1a; 1.平值期权&#xff0…

11计算机视觉—语义分割与转置卷积

目录 1.语义分割应用语义分割和实例分割2.语义分割数据集:Pascal VOC2012 语义分割数据集预处理数据:我们使用图像增广中的随机裁剪,裁剪输入图像和标签的相同区域。3.转置卷积 上采样填充、步幅和多通道填充步幅多通道转置卷积是一种卷积:重新排列输入和核转置卷积是一种卷…

14-62 剑和诗人36 - 混合专家 (MoE) 扩展 AI 视野

了解混合专家 (MoE) 混合专家 (MoE) 是一种机器学习技术&#xff0c;它将多个“专家”神经网络模型组合成一个更大的模型。MoE 的目标是通过组合专业专家&#xff08;每个专家专注于不同的子领域&#xff09;来提高 AI 系统的准确性和能力。 MoE 模型的一些关键特征&#xff1…

Golang | Leetcode Golang题解之第225题用队列实现栈

题目&#xff1a; 题解&#xff1a; type MyStack struct {queue []int }/** Initialize your data structure here. */ func Constructor() (s MyStack) {return }/** Push element x onto stack. */ func (s *MyStack) Push(x int) {n : len(s.queue)s.queue append(s.queu…

Linux笔记之使用系统调用sendfile高速拷贝文件

Linux笔记之使用系统调用sendfile高速拷贝文件 code review! 文章目录 Linux笔记之使用系统调用sendfile高速拷贝文件sendfile 性能优势sendfile 系统调用优点&#xff1a;缺点&#xff1a; cp 命令优点&#xff1a;缺点&#xff1a; 实际测试&#xff1a;拷贝5.8个G的文件&a…

14-63 剑和诗人37 - 分布式系统中的数据访问设计

​​ 在分布式系统中,跨服务和数据库提供统一、可靠的数据访问至关重要,但又极具挑战性。微服务和数据库的拓扑结构为分布、缓存、复制和同步带来了复杂性。 让我们探索有助于解决这些复杂性并简化构建强大、高性能分布式系统的常见数据访问模式。 概述 我们将通过示例介绍…

苹果手机抹机(马来西亚)操作步骤

苹果手机抹机&#xff08;马来西亚&#xff09;操作步骤 操作环境操作步骤 操作环境 苹果6s&#xff0c;没有插卡&#xff0c;就连接上了一个wifi 操作步骤

领取serv00免费虚拟主机

参考 ‍ 教程地址【免费serv00虚拟机SSH登录搭建网站】 ‍ 领取地址 ​​ 领到了 ​​ SSH登录要魔法&#xff0c;网页登录不用 ​​ 轻松搭建自己的静态网站 ​​ ‍ soulio.serv00.net 网页加载速度还可以。 ​​ ‍ ‍

Qt/QML学习-定位器

QML学习 定位器例程视频讲解代码 main.qml import QtQuick 2.15 import QtQuick.Window 2.15Window {width: 640height: 480visible: truetitle: qsTr("positioner")Rectangle {id: rectColumnwidth: parent.width / 2height: parent.height / 2border.width: 1Col…

Django 框架下的media和static静态文件

Django有两种静态文件 static&#xff1a; 静态文件夹&#xff0c;存放CSS,JS,网站的一些图片等静态资源&#xff0c;为Templates下的html页面提供的。static是不会变化的 media&#xff1a;媒体文件夹&#xff0c;存放网站中用户所相关的一些文件&#xff0c;比如说用户的图片…

杜比全景声——空间音频技术

什么是杜比&#xff1f;是否是标清、高清、超清之上的更清晰的格式&#xff1f;杜比全景声 和传统多声道立体声的差别&#xff1f;杜比全景声音频的渲染方式&#xff1f;车载平台上杜比技术的应用&#xff1f; 杜比技术的起源 杜比实验室&#xff08;Dolby Laboratories&…

SpringBoot使用RedisTemplate、StringRedisTemplate操作Redis

前言 RedisTemplate 是 Spring Boot 访问 Redis 的核心组件&#xff0c;底层通过 RedisConnectionFactory 对多种 Redis 驱动进行集成&#xff0c;上层通过 XXXOperations 提供丰富的 API &#xff0c;并结合 Spring4 基于泛型的 bean 注入&#xff0c;极大的提供了便利&#x…

【计算机网络03】不花钱怎么搭建一个网络实验室

使用GNS3和虚拟机搭建网络实验室 1、安装抓包工具分析数据包2、定义和使用抓包筛选器3、安装和配置GNS34、配置路由器和VPCS5、使用WireShark捕获GNS3网络数据包6、VMware创建虚拟机7、使用思科PacketTracer 1、安装抓包工具分析数据包 官网安装wireshark&#xff1a;https://…

LLM大模型应用中的安全对齐的简单理解

LLM大模型应用中的安全对齐的简单理解 随着人工智能技术的不断发展&#xff0c;大规模语言模型&#xff08;如GPT-4&#xff09;的应用越来越广泛。为了保证这些大模型在实际应用中的性能和安全性&#xff0c;安全对齐&#xff08;Safe Alignment&#xff09;成为一个重要的概…

Nginx中文URL请求404

这两天正在搞我的静态网站。方案是&#xff1a;从思源笔记Markdown笔记&#xff0c;用MkOcs build成静态网站&#xff0c;上传到到Nginx服务器。遇到一个问题&#xff1a;URL含有中文会404&#xff0c;全英文URL则正常访问。 ‍ 比如&#xff1a; ​​ ‍ 设置了utf-8 ht…

时序分解 | Matlab基于ESMD极点对称模态分解

时序分解 | Matlab基于ESMD极点对称模态分解 目录 时序分解 | Matlab基于ESMD极点对称模态分解效果一览基本介绍程序设计参考资料 效果一览 基本介绍 ESMD&#xff08;Extreme-point Symmetric Mode Decomposition&#xff09;是一种信号分解方法&#xff0c;用于提取信号中的模…

AC修炼计划(AtCoder Regular Contest 180) A~C

A - ABA and BAB A - ABA and BAB (atcoder.jp) 这道题我一开始想复杂了&#xff0c;一直在想怎么dp&#xff0c;没注意到其实是个很简单的规律题。 我们可以发现我们住需要统计一下类似ABABA这样不同字母相互交替的所有子段的长度&#xff0c;而每个字段的的情况有&#xff…

LoRaWAN网络协议Class A/Class B/Class C三种工作模式说明

LoRaWAN是一种专为广域物联网设计的低功耗广域网络协议。它特别适用于物联网&#xff08;IoT&#xff09;设备&#xff0c;可以在低数据速率下进行长距离通信。LoRaWAN 网络由多个组成部分构成&#xff0c;其中包括节点&#xff08;终端设备&#xff09;、网关和网络服务器。Lo…