neo4j 图数据库:Cypher 查询语言、医学知识图谱

neo4j 图数据库:Cypher 查询语言、医学知识图谱

    • Cypher 查询语言
      • 创建数据
      • 查询数据
        • 查询并返回所有节点
        • 查询并返回所有带有特定标签的节点
        • 查询特定属性的节点及其所有关系和关系的另一端节点
        • 查询从名为“小明”的节点到名为“小红”的节点的路径
      • 更新数据
        • 更新一个节点的属性
        • 添加新属性
        • 更新关系的属性
      • 删除数据
        • 删除节点
        • 删除关系
        • 删除属性
      • 三元组导入知识图谱
        • 对于 `kg_triples_small.txt`
        • 对于 `CPubMed-KGV_1.1.txt`
        • 深度级联查询 - 获取全面的症状-疾病网络
      • Python 交互 Neo4j
        • 步骤 1: 安装 Neo4j Python 驱动程序
        • 步骤 2: 建立连接
        • 步骤 3: 执行查询
        • 步骤 4: 处理事务
        • 步骤 5: 关闭驱动
      • 查询性能优化
        • 使用索引
        • 合理使用标签
        • 优化Cypher查询
        • 使用参数化查询
        • 使用更高效的查询模式
        • 监控和分析查询性能

 


Cypher 查询语言

Cypher 是 neo4j 查询语言。

以下列举一些最少必要知识,能用就行。

其他用法,可以问大模型。

创建数据

CREATE (n:User {name:"小明", age:18}) RETURN n
# 创建一个属性为 name:"小明" 和 age:18 的 User 类型的节点,并返回这个节点。

CREATE (n:User {name:"小明"}) -[r:LOVE{time:"一万年"}]-> (m:User{name:"小红"}) return n,r,m
# 创建了两个用户节点:小明 和 小红。它还创建了一个从 小明 指向 小红 的 LOVE 类型的关系,并设置了属性 time:"一万年"。该命令返回这两个节点以及他们之间的关系。

CREATE (n:User {name:"小明"}) <-[r:LOVE{time:"一万年"}]- (m:User{name:"小红"}) return n,r,m
# 与第二条命令类似,但关系的方向相反。

在 Cypher 查询语言中,用于图数据库操作的特定符号有特殊意义,这里对您提到的符号进行详细解释:

  1. {}(花括号):

    花括号用于定义节点或关系的属性。

    在创建节点或关系时,花括号内可以包含一系列的键值对,键与值之间用冒号分隔。例如:

    CREATE (n:User {name: "小明", age: 18})
    

    这里 {name: "小明", age: 18} 定义了一个 User 类型的节点,具有 nameage 两个属性。

  2. :(冒号):
    冒号在 Cypher 中用于指定节点的标签或关系的类型。

    标签通常用来分类或标识不同的节点,而关系的类型用来描述节点之间的连接方式。

    例如:

    MATCH (n:User) -[:FRIEND]-> (m:User)
    

    这里 :User 表明 nmUser 类型的节点,而 :FRIEND 指明两者之间的关系类型为 FRIEND

  3. ->(箭头):
    箭头用于指明关系的方向。

    在图数据库中,关系可以是有向的,箭头显示了从一个节点指向另一个节点的路径。例如:

    CREATE (n) -[:LIKES]-> (m)
    

    这表示从节点 n 到节点 m 存在一个 LIKES 类型的关系,并且方向是从 n 指向 m

  4. ()(圆括号):

    圆括号用于围绕节点,并可与其他符号结合表示关系和属性。

    在定义节点时,圆括号内可以包含节点的变量名(可选)、标签(可选)和属性(可选)。例如:

    MATCH (n) -[:KNOWS]-> (m)
    

    这里 (n)(m) 分别代表图中的两个节点,通过 KNOWS 关系相连。

这些符号的组合使得 Cypher 查询语言能够直观地描述和操作图数据结构。

查询数据

这三个 Cypher 查询示例都是用来从图数据库中检索数据的:

查询并返回所有节点
MATCH (n) 
RETURN n
  • MATCH (n): 匹配图中的所有节点,这里 n 是节点的变量名,可以用来引用任何被匹配到的节点。
  • RETURN n: 返回所有匹配到的节点。
  • 注释:// 匹配并返回图中的所有节点
查询并返回所有带有特定标签的节点
MATCH (n:User) 
RETURN n
  • MATCH (n:User): 匹配图中所有标记为 User 的节点,:User 指定了节点的标签。
  • RETURN n: 返回所有带有 User 标签的节点。
  • 注释:// 查询并返回所有标为“User”的节点
查询特定属性的节点及其所有关系和关系的另一端节点
MATCH (n:User {name:"小明"}) -[r]- (m) 
RETURN n, r, m
  • MATCH (n:User {name:"小明"}) -[r]- (m): 匹配图中名为 “小明” 的 User 类型节点,并匹配该节点的所有关系 r 及关系的另一端节点 m。关系 [r] 没有指定方向,表示可以是任何方向。
  • RETURN n, r, m: 返回与名为 “小明” 的 User 节点有关系的所有节点和这些关系。写成 return * 等同
  • 注释:// 查询名为“小明”的用户节点及其所有关系和关联节点
查询从名为“小明”的节点到名为“小红”的节点的路径
MATCH path = (a:User {name: "小明"})-[*]->(b:User {name: "小红"})
RETURN path

这条查询的解释如下:

  • MATCH path = (a:User {name: "小明"})-[*]->(b:User {name: "小红"}): 这里定义了一个变量 path 来保存从“小明”到“小红”的路径。(a:User {name: "小明"})(b:User {name: "小红"}) 分别指定了起点和终点节点,而 [*] 表示路径中可以包含任意数量和类型的关系,并且是有方向的,从“小明”指向“小红”。
  • RETURN path: 返回找到的所有路径。

如果你想限制路径的长度,例如,查找最多经过3个关系的路径,可以修改查询如下:

MATCH path = (a:User {name: "小明"})-[*..3]->(b:User {name: "小红"})
RETURN path

这个修改使得查询只返回最多包含三个关系的路径。

这样的限制有助于避免在大图中执行过于复杂的查询,从而可能导致性能问题。

此外,如果你对路径的详细信息感兴趣,比如路径中每个节点和关系的具体属性,你可以展开路径的返回内容:

MATCH path = (a:User {name: "小明"})-[*]->(b:User {name: "小红"})
RETURN nodes(path) AS nodes, relationships(path) AS relationships

这将返回路径中的所有节点和关系,使得你能够获取更多关于路径的具体细节。

这些查询覆盖了从最基本的节点检索到更具体的带有条件和关系的检索,适合不同的查询需求。

在实际使用时,根据图的大小和复杂性,你可能需要考虑查询的效率和性能。

更新数据

在 Cypher 查询语言中,更新数据通常涉及修改节点或关系的属性。这些操作通过 SET 关键词来实现。下面,我会给出一些常见的更新数据的示例:

更新一个节点的属性

假设你想更新名为“小明”的用户的年龄。你可以使用以下Cypher命令:

MATCH (n:User {name: "小明"})
SET n.age = 20
RETURN n

这条命令的解释如下:

  • MATCH (n:User {name: "小明"}): 找到所有名为“小明”的 User 节点。
  • SET n.age = 20: 将这些节点的 age 属性设置为 20
  • RETURN n: 返回更新后的节点。
添加新属性

如果你想给“小明”添加一个新的属性,比如 email

MATCH (n:User {name: "小明"})
SET n.email = "xiaoming@example.com"
RETURN n

这将给“小明”节点添加一个 email 属性,并设其值为 “xiaoming@example.com”。

更新关系的属性

假设你想更新“小明”和“小红”之间 LOVE 关系的时间属性:

MATCH (a:User {name: "小明"})-[r:LOVE]->(b:User {name: "小红"})
SET r.time = "两万年"
RETURN a, r, b

这条命令的解释如下:

  • MATCH (a:User {name: "小明"})-[r:LOVE]->(b:User {name: "小红"}): 找到从“小明”到“小红”的 LOVE 类型的关系。
  • SET r.time = "两万年": 更新这个关系的 time 属性。
  • RETURN a, r, b: 返回更新后的节点和关系。

删除数据

在 Cypher 查询语言中,删除操作涉及到移除节点、关系、属性或整个图结构的一部分。

删除节点

要删除特定的节点,你需要先匹配到这个节点,然后使用 DELETE 命令。

需要注意的是,如果该节点还有任何关系,直接删除会失败,因为图数据库要求任何存在的关系都必须有明确的起点和终点。

如果你想删除一个节点及其所有关系,可以使用 DETACH DELETE

示例:删除名为“小红”的用户节点及其所有关系:

MATCH (n:User {name: "小红"})
DETACH DELETE n

这里,DETACH DELETE n 会删除匹配到的节点 n 及其所有关系。

删除关系

如果你想单独删除节点之间的关系而保留节点本身,可以匹配到这些关系然后删除它们。

示例:删除“小明”和“小红”之间的所有关系:

MATCH (a:User {name: "小明"})-[r]-(b:User {name: "小红"})
DELETE r

这条命令不会删除任何节点,只会删除两个用户之间的所有关系。

删除属性

你可以使用 REMOVE 命令来删除节点或关系上的某个属性。

示例:删除“小明”节点的 age 属性:

MATCH (n:User {name: "小明"})
REMOVE n.age
RETURN n

执行后,“小明”的节点将不再有 age 属性。

三元组导入知识图谱

对于 kg_triples_small.txt
  1. 检查数据格式

    • 确认每行是不是标准的三元组形式,例如 "主体, 关系, 宾体"
  2. 导入到Neo4j

    • 如果文件已经是CSV格式,直接使用如下Cypher命令导入:
      LOAD CSV FROM 'file:///path_to_kg_triples_small.csv' AS line
      MERGE (subject:Entity {name: line[0]})
      MERGE (object:Entity {name: line[2]})
      MERGE (subject)-[r:RELATION {type: line[1]}]->(object)
      
对于 CPubMed-KGV_1.1.txt

CPubMed-KGV_1.1.txt 格式有点特别。

是@@形式,这种和三元祖形式有差异,要怎么处理呢?

这种数据是人工做的标识文本,是分类,特有的设计模式,直接导入就可以了。

可以用llamaindex,可以直接导入,因为AI帮你处理了数据,就不用你手动写代码转csv。

深度级联查询 - 获取全面的症状-疾病网络

在医学领域,构建和查询症状与疾病之间的网络可以极大地帮助医生和研究人员理解疾病的复杂关系,从而改进诊断和治疗方法。

在这样的应用场景中,深度级联查询可以用来探索症状和疾病之间的多级关联,比如通过中间状态或其他相关症状/疾病来链接起始症状和目标疾病。

首先,我们需要构建一个图模型,其中包含两种基本类型的节点:Symptom(症状)和Disease(疾病)。

这些节点通过关系如INDICATES(表征)、LEADS_TO(导致)或ASSOCIATED_WITH(相关联)相连。

例如:

  • 症状A INDICATES 疾病B
  • 疾病B LEADS_TO 疾病C
  • 症状A ASSOCIATED_WITH 症状D

假设我们想要探索某个特定症状如何通过一系列其他症状和疾病最终可能导致某个具体疾病。

这种查询不仅有助于诊断,还能揭示潜在的病理路径。

MATCH path = (s:Symptom {name: "Persistent Cough"})-[:INDICATES|ASSOCIATED_WITH*1..4]->(d:Disease {name: "Lung Cancer"})
RETURN path

这里的查询做了以下几点:

  • 起始节点:症状节点,名为“Persistent Cough”(持续性咳嗽)。
  • 目标节点:疾病节点,名为“Lung Cancer”(肺癌)。
  • 关系类型和深度:通过INDICATES(表征)或ASSOCIATED_WITH(相关联)关系,探索从起始症状到目标疾病的所有可能路径,路径的深度从1到4级不等。
  • 返回:返回从“持续性咳嗽”可能导致“肺癌”的所有路径。

为了进一步探索可能的中间疾病和症状,可以扩展查询来包含更多的关系类型和节点:

MATCH path = (s:Symptom {name: "Persistent Cough"})-[:INDICATES|ASSOCIATED_WITH|LEADS_TO*1..6]->(d:Disease {name: "Lung Cancer"})
RETURN path

在这个查询中,添加了LEADS_TO关系,这表示疾病到疾病的直接影响,允许探索更长的病理路径。

Python 交互 Neo4j

在项目中,一般是Python中执行Cypher查询语句,从而操作Neo4j数据库中的数据,而不是直接对着 neo4j 操作。

步骤 1: 安装 Neo4j Python 驱动程序

首先,确保你已经安装了neo4j包。如果还未安装,可以通过pip安装:

pip install neo4j
步骤 2: 建立连接

你需要创建一个与Neo4j数据库的连接。通常这涉及到指定数据库的URL、用户名和密码。

from neo4j import GraphDatabase

uri = "bolt://localhost:7687"  # Neo4j实例的Bolt URL
username = "neo4j"
password = "your_password"

driver = GraphDatabase.driver(uri, auth=(username, password))
步骤 3: 执行查询

通过定义一个函数来执行查询。这个函数使用一个驱动实例来运行Cypher查询并返回结果。

def get_user(driver, name):
    with driver.session() as session:
        result = session.run("MATCH (u:User {name: $name}) RETURN u", name=name)
        return [record["u"] for record in result]

# 调用函数
user_data = get_user(driver, "小明")
print(user_data)
步骤 4: 处理事务

为了处理更复杂的业务逻辑,可以在会话中执行多个操作作为一个事务。

def create_friendship(driver, name1, name2):
    with driver.session() as session:
        session.write_transaction(lambda tx: 
            tx.run("MATCH (a:User), (b:User) "
                   "WHERE a.name = $name1 AND b.name = $name2 "
                   "CREATE (a)-[:FRIENDS_WITH]->(b)", name1=name1, name2=name2))

create_friendship(driver, "小明", "小红")
步骤 5: 关闭驱动

操作完成后,确保关闭驱动连接。

driver.close()

查询性能优化

在医学问诊的场景中,使用Neo4j来存储和查询有关疾病、症状、治疗方法及其相互关系的数据时,可以采取以下优化策略来提升查询性能。每个策略下将给出一个具体的例子:

使用索引

应用场景:快速查找特定症状或疾病的记录。
示例:为疾病的名称创建索引,以便快速启动诊断过程。

CREATE INDEX ON :Disease(name)
合理使用标签

应用场景:确保查询只涉及相关类型的节点,以减少查询范围。
示例:在查询涉及特定类型的节点时,使用合适的标签。

MATCH (s:Symptom)-[:INDICATES]->(d:Disease)
WHERE s.name = 'Headache'
RETURN d.name

在此例中,SymptomDisease 标签帮助数据库引擎快速定位和查询相关节点。

优化Cypher查询

应用场景:避免返回不必要的数据,减少数据传输。
示例:只返回需要的属性,而不是整个节点。

MATCH (p:Patient)-[:HAS_SYMPTOM]->(s:Symptom)
RETURN s.name

这里,只返回症状名称而非整个症状节点的所有属性。

使用参数化查询

应用场景:提高查询的重用性和安全性。
示例:使用参数化的方式来查询具有特定症状的所有患者。

MATCH (p:Patient)-[:HAS_SYMPTOM]->(s:Symptom {name: $symptomName})
RETURN p.name

参数 $symptomName 可以在运行时提供,这样同一查询可以用于不同的症状。

使用更高效的查询模式

应用场景:避免过于复杂的匹配模式,特别是在大型图中。
示例:使用较短的路径和限制结果集的大小来优化查询。

MATCH path = (s:Symptom {name: 'Fever'})-[:INDICATES*1..2]->(d:Disease)
RETURN d.name LIMIT 10

这里,路径长度限制为1到2跳,查询结果也限制为最多10个。

监控和分析查询性能

应用场景:识别和优化慢查询。
示例:使用PROFILE来分析查询并找出性能瓶颈。

PROFILE MATCH (p:Patient)-[:HAS_DISEASE]->(d:Disease)
WHERE d.name = 'Diabetes'
RETURN p.name

PROFILE 提供了关于查询如何执行的详细信息,包括每个操作的数据库命中次数和资源消耗。

通过应用这些策略,医学问诊系统的数据库查询可以更加快速和有效,从而提升系统的整体性能和用户体验。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/786323.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

汇川Easy系列PLC使用本地脉冲5轴设置

根据官网手册可以看到&#xff0c;Easy302往上的系列都是支持本地5轴脉冲控制的 常规汇川PLC本地脉冲轴配置时&#xff0c;脉冲和方向的输出点都是成对出现的&#xff0c;但是easy如果要使用5轴的话&#xff0c;就需要自己定义方向 可以看到&#xff0c;Y0,Y1这两个点是单独…

SQLite 命令行客户端 + HTA 实现简易UI

SQLite 命令行客户端 HTA 实现简易UI SQLite 客户端.hta目录结构参考资料 仅用于探索可行性&#xff0c;就只实现了 SELECT。 SQLite 客户端.hta <!DOCTYPE html> <html> <head><meta http-equiv"Content-Type" content"text/html; cha…

27 岁的程序员 Gap 一年感受

最大的感受&#xff1a;变成 28 岁了 好吧&#xff0c;开个玩笑&#xff0c;下面是正文。 0.背景以及 Gap 原因 我硕士毕业时是 26 岁&#xff0c;然后校招进入一家航天国企&#xff0c;负责 Web 后端开发&#xff0c;工作了一年之后发现个人成长和挑战的空间极其有限&#…

SAP 新增移动类型简介

在SAP系统中新增移动类型的过程涉及多个步骤,‌包括复制现有的移动类型、‌调整科目设置以及进行必要的测试。‌以下是新增移动类型的一般步骤和关键点:‌ 复制现有的移动类型:‌ 使用事务代码OMJJ进入移动类型维护界面。‌ 勾选移动类型 这里不填写移动类型,然后直接下…

告别堆积,迎接清新:回收小程序,打造无废生活新选择

在快节奏的现代生活中&#xff0c;物质的丰富与便利似乎成为了我们日常的一部分&#xff0c;但随之而来的&#xff0c;是日益增长的废弃物堆积问题。街道边、社区里&#xff0c;甚至是我们的家中&#xff0c;废弃物品仿佛无孔不入&#xff0c;逐渐侵蚀着我们的生活空间与环境质…

Pyspider WebUI 未授权访问致远程代码执行漏洞复现

0x01 产品简介 Pyspider是由国人binux编写的强大的网络爬虫系统,它带有强大的WebUI(Web用户界面),为用户提供了可视化的编写、调试和管理爬虫的能力。这一特点使得Pyspider在爬虫框架中脱颖而出,尤其适合那些希望快速上手并高效开发爬虫的用户。允许用户直接在网页上编写…

zabbix“专家坐诊”第245期问答

问题一 Q&#xff1a;vfs.dev.discovery拿的是哪里的文件&#xff0c;我看源码里面获取的是/proc/parttions里面的信息&#xff0c;但是我没有这个device&#xff0c;是怎么获取出来的&#xff1f; 在这里插入图片描述 A&#xff1a;检查下系统内核版本或者agent程序版本&…

15 CIG重量级监控

目录 1. docker stats原生命令 2. CIG CAdvisor InfluxDB Granfana 3. 安装部署 4. Grafana配置 4.1. 添加数据源 4.2. 添加工作台 grafana官网文档参考&#xff1a;Grafana documentation | Grafana documentation influxdb官网文档参考&#xff1a;https://docs.in…

拨开迷雾,寻找大模型应用落地的支点

自主可控大模型底座个性化刚需场景&#xff0c;这家大模型公司率先趟出一条个性化发展路径。 作者 | 辰纹 来源 | 洞见新研社 上海的温度很高&#xff0c;接近40度&#xff0c;比上海温度更高的是AI的热度。 7月4日&#xff0c;2024世界人工智能大会暨人工智能全球治理高…

tapd项目管理由完全免费的工具向付费工具转变

TAPD从2022年左右开始面由一个完全免费的工具向付费工具转变。从最新政策看&#xff0c;TAPD 针对不同规模和需求的团队&#xff0c;TAPD提供了多种版本&#xff0c;其中包括“卓越版”和“企业版”。免费版本人数规模由原来的100人不断缩小&#xff0c;2024年仅支持30人以内免…

Java-Redis-Clickhouse-Jenkins-MybatisPlus-Zookeeper-vscode-Docker-jdbc

文章目录 Clickhouse基础实操windows docker desktop 下载clickhousespringboot项目配置clickhouse Redis谈下你对Redis的了解&#xff1f;Redis一般都有哪些使用的场景&#xff1f;Redis有哪些常见的功能&#xff1f;Redis支持的数据类型有哪些&#xff1f;Redis为什么这么快…

科普文:深入理解负载均衡(四层负载均衡、七层负载均衡)

概叙 网络模型&#xff1a;OSI七层模型、TCP/IP四层模型、现实的五层模型 应用层&#xff1a;对软件提供接口以使程序能使用网络服务&#xff0c;如事务处理程序、文件传送协议和网络管理等。&#xff08;HTTP、Telnet、FTP、SMTP&#xff09; 表示层&#xff1a;程序和网络之…

循环练习题

代码&#xff1a; public static void main(String[] args) { for (char c1a;c1<z;c1){System.out.print(" "c1); }System.out.println();for (char c2Z;c2>A;c2--){System.out.print(" "c2);}} 结果为&#xff1a;

二. Linux内核

一. Linux内核源码目录分析 arch 包含与体系结构相关的代码&#xff0c;用于支持不同硬件体系结构的实现。这个目录下会根据不同的架构&#xff08;如x86、arm、mips等&#xff09;进一步细分。 block 用于处理块设备的子系统&#xff0c;包含与块设备驱动和I/O调度相关的代码。…

HTML(29)——立体呈现

作用&#xff1a;设置元素的子元素是位于3D空间中还是平面中 属性名&#xff1a;transform-style 属性值&#xff1a; flat&#xff1a;子级处于平面中preserve-3d:子级处于3D空间 步骤&#xff1a; 父级元素添加 transform-style:preserve-3d 子级定位调整子盒子的位置&a…

高智能土壤养分检测仪:农业生产的科技新助力

在科技日新月异的今天&#xff0c;农业领域也迎来了革命性的变革。其中&#xff0c;高智能土壤养分检测仪作为现代农业的科技新助力&#xff0c;正逐渐改变着传统的农业生产方式&#xff0c;为农民带来了前所未有的便利与效益。 高智能土壤养分检测仪&#xff0c;是一款集高科技…

PMON的解读和开发

提示&#xff1a;龙芯2K1000PMON相关记录 文章目录 1 PMON的发展和编译环境PMONPMON2000 2 PMON2000的目录结构3 Targets目录的组成4 PMON编译环境的建立5 PMON2000的框架6 异常向量表7 Pmon的空间分配8 PMON的汇编部分(starto.S或sbdreset.S)的解读Start.SC代码部分dbginit 9 …

为什么要参加学术会议?

为什么要参加学术会议&#xff1f; 学术会议是一种以促进科学发展、学术交流、课题研究等学术性话题为主题的会议。学术会议一般都具有国际性、权威性、高知识性、高互动性等特点&#xff0c;其参会者一般为科学家、学者、教师等具有高学历的研究人员。下面苏老师就跟大家详细…

92. 反转链表 II (Swift 版本)

题目描述 给你单链表的头指针 head 和两个整数 left 和 right &#xff0c;其中 left < right 。请你反转从位置 left 到位置 right 的链表节点&#xff0c;返回 反转后的链表 。 分析 这是一个经典的链表问题&#xff0c;要求反转链表的部分节点。我们可以通过以下步骤实…

Linux -- 认识gcc/g++、代码的编译过程

目录 前言&#xff1a; 使用 gcc/g&#xff1a; 代码的编译过程&#xff1a; 预处理&#xff1a; 头文件展开&#xff1a; 宏替换去注释&#xff1a; ​编辑 条件编译&#xff1a; 编译&#xff1a; 汇编&#xff1a; 链接&#xff1a; 动态库&#xff08;动态链…