PMON的解读和开发

提示:龙芯2K1000PMON相关记录

文章目录

  • 1 PMON的发展和编译环境
    • PMON
    • PMON2000
  • 2 PMON2000的目录结构
  • 3 Targets目录的组成
  • 4 PMON编译环境的建立
  • 5 PMON2000的框架
  • 6 异常向量表
  • 7 Pmon的空间分配
  • 8 PMON的汇编部分(starto.S或sbdreset.S)的解读
    • Start.S
    • C代码部分
    • dbginit
  • 9 Bonito的空间分配
  • 10 PCI的空间分配
  • 开发时需要注意的问题


1 PMON的发展和编译环境

PMON

  • 科大那个PMON就是这个版本的。该版本的功能有:shell, net, load, debug。不支持硬盘,显卡。并且扩展性不好。
  • 该版本的编译器是sde-gcc.

PMON2000

  • 现在龙芯1和2用的BIOS, 在原来的PMON的基础上添加了硬盘支持,文件系统ext2的支持,显卡的支持。修复了debug功能,扩展性也得到提高。比较容易移植到新的系统。
  • 编译器为mips-elf-gcc

2 PMON2000的目录结构

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 Targets目录的组成

每个系统一个目录,我们拿Bonito来为例子,主要有下列文件:

  • start.S 位于Targets/Bonito/Bonito目录下,是C环境建立之前的汇编代码,使整个BIOS运行的起点。
  • tgt_machdep.c位于Targets/Bonito/Bonito目录下,一些板子相关的函数。
  • pci_machdep.c进行Targets/Bonito/pci空间分配的一些函数
  • Targets/Bonito/dev目录下一些板子特殊的设备的驱动。
  • Targets/Bonito/conf目录下是一些编译环境建立需要的一些文件

4 PMON编译环境的建立

  • 将comp.tar.gz在/usr/local解开
  • 将/usr/local/comp/mips-elf/gcc-2.95.3/bin加入到PATH目录下
  • 进入pmon2000的tools目录下make,建立一些conf需要的工具。
  • 进入pmon2000的Targets/Bonito/conf目录中
  • 编辑conf目录下Bonito文件,选择需要编译的模块
  • tools/pmoncfg/pmoncfg Bonito(conf类型文件)。形成目标主目录下的compiler目录
  • 进入Targets/Bonito/compiler/Bonito的目录,make形成pmon。
  • Makefile是根据Targets/Bonito/conf/Makefile.Bonito文件形成的。
  • 链接脚本是为Targets/Bonito/conf/ld.script。

5 PMON2000的框架

在这里插入图片描述

6 异常向量表

在这里插入图片描述

7 Pmon的空间分配

在这里插入图片描述

8 PMON的汇编部分(starto.S或sbdreset.S)的解读

在这里插入图片描述

Start.S

当整个板子起电后,CPU将从0xBFC00000取指令开始执行,而ROM在系统中的地址就是从该地址开始的,所以其中的第一条指令就是整个CPU的第一个指令,在MIPS中,异常处理入口有两套,通过CP0的STATUS寄存器位BEV来决定,当BEV=1时,异常的入口地址为0xBFC00000开始的地址,而BEV=0,异常地址为0x80000000开始的地址,所以PMON程序段开始处是一些异常的调入口,需要跳过这段空间,程序通过一个跳转bal指令跳到后面.

       bal     locate 
       nop
       bal		uncached
       nop
       bal		locate
       nop	
uncached:
        or      ra, UNCACHED_MEMORY_ADDR
        j       ra
        nop

此处是可以从cache空间转换到uncache的空间,ra中保留的是bal locate这条指令的地址,然后或上UNCACHED_MEMORY_ADDR,该地址就变成uncache的地址了.

  la      s0, start            
  subu    s0, ra, s0
  and     s0, 0xffff0000 

这段代码是为了访问数据,因为这段汇编在Rom执行,而编译出来的数据段在0x8002xxxx,为了能够访问数据段的数据,需要进行一个地址的修正,s0这是起到这种修正的目的。

  • 初始化CPU内的寄存器,清TLB.
  • 初始化一些北桥的基本配置,以确保uart能够正常工作.
  • 初始化uart,主要是设置波特率.
  • 初始化内存(主要通过I2C协议从内存的EEPROM读取内存参数来进行设置).
  • 初始化cache.
    拷贝pmon的代码到内存,然后通过
la      v0, initmips
jalr    v0
nop 

从此代码便到内存中间去了,从这开始因为可以读写内存,所以有了栈,故可以用C的代码了,所以以后的程序便是C代码了.

C代码部分

Ram中运行,入口为initmips
在文件Targets/Boniton/Bonito/tgt_machdep.c中

void initmips(unsigned int memsz)
{tgt_cpufreq();
	cpuinfotab[0] = &DBGREG;
        dbginit(NULL);
                                                                                                                              
	 bcopy(MipsException, (char *)TLB_MISS_EXC_VEC, MipsExceptionEnd - MipsException);
        bcopy(MipsException, (char *)GEN_EXC_VEC, MipsExceptionEnd - MipsException);
                                                                                                                              
        CPU_FlushCache();
                                                                                                                              
        CPU_SetSR(0, SR_BOOT_EXC_VEC);
	main();
}

主要初始化在dbginit函数中执行。

dbginit

 void dbginit (char *adr)
{
	__init();       /* Do all constructor initialisation */
	envinit ();                                                                                                                   
	tgt_devinit();                                                                                                                        
#ifdef INET
	init_net (1);
#endif                                                                                                                        
#if NCMD_HIST > 0
	histinit ();
#endif
#if NMOD_SYMBOLS > 0
	syminit ();
#endif
 #ifdef DEMO
	demoinit ();
#endif                                                                                                          
	initial_sr |= tgt_enable (tgt_getmachtype ());                                                                                                             
#ifdef SR_FR
        Status = initial_sr & ~SR_FR; /* don't confuse naive clients */
#endif
	ioctl(STDIN, TCGETA, &consterm);
...
...
...
}//gdbinit 
 __init();初始化一些数据结构.
Envinit ();初始化环境变量.
tgt_init();初始化与板级相关的过程,在我们系统中主要是初始化北桥和PCI.
inet_init();初始化网络.
Hisinit();初始化命令历史记录.
Ioctl(STDIN,TCGETA,&consterm);建立终端.	

9 Bonito的空间分配

在这里插入图片描述

10 PCI的空间分配

tgt_devinit()
_pci_businit()
_pci_hwinit
pci_hwinit() 为Pmon主要初始化PCI在北桥的窗口的函数 ,这个函数在Target/Ev64240/pci/pci_machdep.c中定义

    pd = pmalloc(sizeof(struct pci_device));
    pb = pmalloc(sizeof(struct pci_bus));                                                                                                                   
    pd->pa.pa_flags = PCI_FLAGS_IO_ENABLED | PCI_FLAGS_MEM_ENABLED;
    pd->pa.pa_iot = pmalloc(sizeof(bus_space_tag_t));
    pd->pa.pa_iot->bus_reverse = 1;
    pd->pa.pa_iot->bus_base = PCI0_IO_SPACE_BASE - PCI0P_IO_SPACE_BASE;
    pd->pa.pa_memt = pmalloc(sizeof(bus_space_tag_t));
    pd->pa.pa_memt->bus_reverse = 1;
      
    pd->pa.pa_memt->bus_base = 0;
    pd->pa.pa_dmat = &bus_dmamap_tag;
    pd->bridge.secbus = pb;
    _pci_head = pd;
	pb->minpcimemaddr  = PCI0P_MEM_SPACE_BASE;
    pb->nextpcimemaddr = PCI0P_MEM_SPACE_BASE + PCI0_MEM_SPACE_SIZE;
    pb->minpciioaddr  = PCI0P_IO_SPACE_BASE;
    pb->nextpciioaddr = PCI0P_IO_SPACE_BASE + PCI0_IO_SPACE_SIZE;
    pb->pci_mem_base   = PCI0_MEM_SPACE_BASE;
    pb->pci_io_base    = PCI0_IO_SPACE_BASE;

建立PCI的空间分配的数据结构.其中pci_mem_base为Memory空间的基地址,pci_io_base 为IO空间的基地址. minipciioaddr 为IO空间的最小可以分配地址, minipcimemaddr 为 Memory 空间的最小可以分配地址. nextpcimemaddr 为PCI的 Memory 空间的下一个分配地址, nextpciioaddr 为PCI的IO空间的下一个分配地址,在pmon的中地址分配是逆序分配的.

pb->max_lat = 255;
pb->fast_b2b = 1;
pb->prefetch = 1;
pb->bandwidth = 4000000;
pb->ndev = 1;
_pci_bushead = pb;
_pci_bus[_max_pci_bus++] = pd;

开发时需要注意的问题

  • Debug的方法
    – 在串口设备没有初始化前, 利用逻辑分析仪进行测试。该方法debug很艰难,所以应该尽早初始化串口。
    – 串口工作后,可以利用串口进行类似printf的Debug方法。
    – 初始化BIOS系统的Shell后,可以利用BIOS系统中的Debug系统进行测试。
  • 地址空间是否正确,北桥上的窗口分配是否正确。
  • 中断问题。
  • 充分利用Pmon所带的调试手段。pmon>h可以看到pmon提供的命令,通过这些命令来检查地址分配是否正确。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/786298.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

为什么要参加学术会议?

为什么要参加学术会议? 学术会议是一种以促进科学发展、学术交流、课题研究等学术性话题为主题的会议。学术会议一般都具有国际性、权威性、高知识性、高互动性等特点,其参会者一般为科学家、学者、教师等具有高学历的研究人员。下面苏老师就跟大家详细…

92. 反转链表 II (Swift 版本)

题目描述 给你单链表的头指针 head 和两个整数 left 和 right &#xff0c;其中 left < right 。请你反转从位置 left 到位置 right 的链表节点&#xff0c;返回 反转后的链表 。 分析 这是一个经典的链表问题&#xff0c;要求反转链表的部分节点。我们可以通过以下步骤实…

Linux -- 认识gcc/g++、代码的编译过程

目录 前言&#xff1a; 使用 gcc/g&#xff1a; 代码的编译过程&#xff1a; 预处理&#xff1a; 头文件展开&#xff1a; 宏替换去注释&#xff1a; ​编辑 条件编译&#xff1a; 编译&#xff1a; 汇编&#xff1a; 链接&#xff1a; 动态库&#xff08;动态链…

高速公路事故检测数据集点亮智能交通:视频动作识别的崭新征程(目标检测)

亲爱的读者们&#xff0c;您是否在寻找某个特定的数据集&#xff0c;用于研究或项目实践&#xff1f;欢迎您在评论区留言&#xff0c;或者通过公众号私信告诉我&#xff0c;您想要的数据集的类型主题。小编会竭尽全力为您寻找&#xff0c;并在找到后第一时间与您分享。 引言 …

spring tx @Transactional 详解 `Advisor`、`Target`、`ProxyFactory

在Spring中&#xff0c;Transactional注解的处理涉及到多个关键组件&#xff0c;包括Advisor、Target、ProxyFactory等。下面是详细的解析和代码示例&#xff0c;解释这些组件是如何协同工作的。 1. 关键组件介绍 1.1 Advisor Advisor是一个Spring AOP的概念&#xff0c;它包…

射频硅基氮化镓:两个世界的最佳选择

当世界继续努力追求更高速的连接&#xff0c;并要求低延迟和高可靠性时&#xff0c;信息通信技术的能耗继续飙升。这些市场需求不仅将5G带到许多关键应用上&#xff0c;还对能源效率和性能提出了限制。5G网络性能目标对基础半导体器件提出了一系列新的要求&#xff0c;增加了对…

如何使用ParaView可视化工具来绘制点云数据的3D点云图像(亲测好用)

如何使用ParaView来绘制点云数据。以下是如何将你的数据导入ParaView并进行可视化的步骤 一、准备数据 首先&#xff0c;你需要将你的数据转换为ParaView可以读取的格式。ParaView支持多种文件格式&#xff0c;其中最常见的是.vtk和.csv格式。为了简单起见&#xff0c;这里我…

JFlash读取和烧录加密stm32程序

JFlash读取和烧录加密stm32程序 安装后JFlash所在的目录&#xff1a;C:\Program Files\SEGGER\JLink 一、烧写加密程序 1、打开C:\Program Files\SEGGER\JLink目录&#xff0c;找到JFlash.exe,双击它&#xff0c;就可以打开该执行程序。见下图&#xff1a; 2、选择“Create …

华为eNSP:HCIA综合实验

一实验要求 HCIA综合实验的配置要求&#xff1a; 1.ISP路由器只能配置IP地址&#xff0c;之后不进行任何配置 2.内部整个网络基于192.168.1.0/24进行地址划分 3.R1/2之间启动OSPF协议&#xff0c;单区域 4.PC1-4自动获取IP地址 5.PC1-4&#xff0c;可以访问PC5&#xff0c;R2…

布隆过滤器 redis

一.为什么要用到布隆过滤器&#xff1f; 缓存穿透&#xff1a;查询一条不存在的数据&#xff0c;缓存中没有&#xff0c;则每次请求都打到数据库中&#xff0c;导致数据库瞬时请求压力过大&#xff0c;多见于爬虫恶性攻击因为布隆过滤器是二进制的数组&#xff0c;如果使用了它…

9.2 栅格图层符号化单波段灰度渲染

文章目录 前言单波段灰度QGis设置为单波段灰度二次开发代码实现单波段灰度 总结 前言 介绍栅格图层数据渲染之单波段灰度显示说明&#xff1a;文章中的示例代码均来自开源项目qgis_cpp_api_apps 单波段灰度 以“3420C_2010_327_RGB_LATLNG.tif”数据为例&#xff0c;在QGis中…

RTK_ROS_导航(2):卫星图查看

目录 1. 基于MapViz的卫星图查看 1. 基于MapViz的卫星图查看 安装 # 源码安装 mkdir -p RTK_VISION/src cd RTK_VISION/src git clone https://github.com/swri-robotics/mapviz.git --branchmelodic-eol sudo apt-get install ros-$ROS_DISTRO-mapviz ros-$ROS_DISTRO-mapviz-…

Idea-单个窗口导入并开启多个module项目

前言 大家是否有过这样的困扰&#xff0c;我们每次打开一个项目就需要单开一个idea窗口&#xff0c;项目少时了还好&#xff0c;一旦涉及多个项目间服务调用&#xff0c;特别是再包括网关、注册中心、前端web服务&#xff0c;需要开启的窗口就会是一大批&#xff0c;每次切换的…

B端全局导航:左侧还是顶部?不是随随便便,有依据在。

一、什么是全局导航 B端系统的全局导航是指在B端系统中的主要导航菜单&#xff0c;它通常位于系统的顶部或左侧&#xff0c;提供了系统中各个模块和功能的入口。全局导航菜单可以帮助用户快速找到和访问系统中的各个功能模块&#xff0c;提高系统的可用性和用户体验。 全局导航…

二叉树树的知识,选择➕编程

在一棵深度为7的完全二叉树中&#xff0c;可能有多少个结点&#xff1f;&#xff08;1层深度为1&#xff0c;节点个数为1&#xff09; 对于深度 d的完全二叉树&#xff1a; 完全二叉树中&#xff0c;前 d−1层是满的。 最后一层&#xff08;第 d 层&#xff09;可以不满&#x…

【vue3|第16期】初探Vue-Router与现代网页路由

日期:2024年7月6日 作者:Commas 签名:(ง •_•)ง 积跬步以致千里,积小流以成江海…… 注释:如果您觉得有所帮助,帮忙点个赞,也可以关注我,我们一起成长;如果有不对的地方,还望各位大佬不吝赐教,谢谢^ - ^ 1.01365 = 37.7834;0.99365 = 0.0255 1.02365 = 1377.4083…

前端工程师

15年前&#xff0c;前端主流的框架jquery&#xff0c;那个时候还没有前端工程师,后端开发人员既要写后台业务逻辑&#xff0c;又要写页面设计&#xff0c;还要应付IE不同版本浏览器兼容问题&#xff0c;非常的繁琐、难搞。 现在前端框架很多、很强大&#xff0c;前端开发工程师…

MySQL——第一次作业

部署MySQL 8.0环境 1&#xff0c;删除之前存在的MySQL程序 控制面板删除 2&#xff0c;删除完成后下载MySQL 官网&#xff1a; https://www.mysql.com 在window下下载MSI版本 3&#xff0c;自定义安装 4&#xff0c;配置环境变量 1&#xff0c;系统高级系统设置 2&#xff…

YOLOV8 + PYQT5单目测距—风险类别检测(五)

YOLOV8 PYQT5单目测距 1. 相关配置2. 测距源码3. PYQT环境配置4. 实验结果4.1 界面4.2 界面卡住解决方案 5. 实现效果 1. 相关配置 系统&#xff1a;win 10 YOLO版本&#xff1a;yolov8 拍摄视频设备&#xff1a;安卓手机 电脑显卡&#xff1a;NVIDIA 2080Ti&#xff08;CPU也…

【Python】 已解决:ValueError: document with multiple roots

文章目录 一、分析问题背景二、可能出错的原因三、错误代码示例四、正确代码示例五、注意事项 已解决&#xff1a;ValueError: document with multiple roots 一、分析问题背景 在Python编程中&#xff0c;处理XML或HTML文档时&#xff0c;有时会遇到“ValueError: document …