卷积神经网络基础篇

文章目录

  • 1、卷积层
    • 1.1、激活函数
    • 1.3、sigmoid
    • 1.4、Tanh
    • 1.5、ReLU
    • 1.6、Leaky ReLU
    • 1.7、误差计算
  • 2、池化层
  • 3、全连接层
  • 4、CNN训练

参考链接1
参考链接2

1、卷积层

卷积层(Convolutional layer),这一层就是卷积神经网络最重要的一个层次,也是“卷积神经网络”的名字来源。卷积神经网路中每层卷积层由若干卷积单元组成,每个卷积单元的参数都是通过反向传播算法优化得到的。
卷积运算的目的是提取输入的不同特征,某些卷积层可能只能提取一些低级的特征如边缘、线条和角等层级,更多层的网路能从低级特征中迭代提取更复杂的特征。

卷积层的作用是对输入数据进行卷积操作,也可以理解为滤波过程,一个卷积核就是一个窗口滤波器,在网络训练过程中,使用自定义大小的卷积核作为一个滑动窗口对输入数据进行卷积。

卷积过程实质上就是两个矩阵做乘法,在卷积过程后,原始输入矩阵会有一定程度的缩小,比如自定义卷积核大小为3*3,步长为1时,矩阵长宽会缩小2,所以在一些应用场合下,为了保持输入矩阵的大小,我们在卷积操作前需要对数据进行扩充,常见的扩充方法为0填充方式。

卷积层中还有两个重要的参数,分别是偏置和激活(独立层,但一般将激活层和卷积层放在一块)。

偏置向量的作用是对卷积后的数据进行简单线性的加法,就是卷积后的数据加上偏置向量中的数据,然后为了增加网络的一个非线性能力,需要对数据进行激活操作,在神经元中,就是将没有的数据率除掉,而有用的数据则可以输入神经元,让人做出反应。

卷积核(是一种特征)对原图进行卷积,是把原图中包含这种特征提取出来
卷积计算(通过卷积核在图像上滑动计算,相乘、求和、取平均)结果等于1表示滤框中的值和卷积核的值完全一样

在这里插入图片描述
在这里插入图片描述

1.1、激活函数

激活函数,最常用的激活函数目前有Relu、tanh、sigmoid,着重介绍一下Relu函数(即线性整流层(Rectified Linear Units layer, 简称ReLU layer)),Relu函数是一个线性函数,它对负数取0,正数则为y=x(即输入等于输出),即f(x)=max(0,x),它的特点是收敛快,求梯度简单,但较脆弱。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.3、sigmoid

Sigmoid函数是传统的神经网络和深度学习领域开始时使用频率最高的激活函数。
其优点主要是连续,平滑便于求导
但是其的缺点也很致命:
1.梯度消失问题(Vanishing Gradient problem):观看图像可知当x>2或x<2时Sigmod输出趋于平滑,导致梯度减小,权重和偏置更新过慢导致网络不更新
2.非零均值特性(none-zero-centered):会使训练震荡达不到最优解,使收敛变慢
3.导数计算复杂,影响速度

在这里插入图片描述

1.4、Tanh

Tanh主要解决了Sigmod非零均值特性的问题,但是其还是存在计算复杂和梯度消失的问题。

在这里插入图片描述

1.5、ReLU

Relu的主要优点有:
1.大于0时,其导数恒为1,不会存在梯度消失的问题
2.计算速度非常快,只需要判断 x 是大于0还是小于0
3.收敛速度远远快于前面的 Sigmoid 和 Tanh函数
但是ReLu也是有着缺陷的:
1.非零均值特性
2.x<0时,输出恒为0.会使某些神经元永远不会被激活,进而导致参数永远不会更新

在这里插入图片描述

1.6、Leaky ReLU

Leaky ReLU 的提出主要是为了解决前面提到的Dead ReLu问题。因为当 x 小于 0 时,其输出不再是 0。虽然同时 Leaky ReLU 具有 ReLU 的所有优点。但是在实际操作中并没有完全证明好于 ReLU 函数。

在这里插入图片描述

1.7、误差计算

计算第一个隐藏的结果
在这里插入图片描述
计算y1和y2的结果
在这里插入图片描述
softmax计算
在这里插入图片描述
损失计算
在这里插入图片描述
在这里插入图片描述
误差反向传播,得到每个节点的损失梯度信息
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
权重更新(新值 = 旧值-学习率*损失梯度)
在这里插入图片描述
分批次训练(每求一次批次进行一次误差计算以及反向传播)
在这里插入图片描述
优化器作用就是为了让网络更快收敛
在这里插入图片描述
wt+1表示更新后的参数,wt表示更新前的参数a表示设置学习率g(wt)是我们所求的损失梯度
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

2、池化层

通常在卷积层之后会得到维度很大的特征,将特征切成几个区域,取其最大值或平均值,得到新的、维度较小的特征。池化方式一般有两种,一种为取最大值,另一种为取均值,池化的过程也是一个移动窗口在输入矩阵上滑动,滑动过程中去这个窗口中数据矩阵上最大值或均值作为输出,池化层的大小一般为2*2,步长为1

池化层夹在连续的卷积层中间, 用于压缩数据和参数的量,减小过拟合。简而言之,如果输入是图像的话,那么池化层的最主要作用就是压缩图像。

池化层的作用是对数据进行降维处理,对于所有神经网络来说,随着网络深度增加,网络中权值参数的数量也会越来越大,这也是导致我们在训练一个大型网络时必须使用大型服务站和GPU加速了,但是卷积神经网络出了它本身权值共享和局部连接方式可以有效的降低网络压力外,池化层也作为一个减低网络压力的重要组成部分,经过卷积层后的数据做为池化层的输入进行池化操作。

池化层的具体作用:
特征不变性,也就是我们在图像处理中经常提到的特征的尺度不变性,池化操作就是图像的resize,平时一张狗的图像被缩小了一倍我们还能认出这是一张狗的照片,这说明这张图像中仍保留着狗最重要的特征,我们一看就能判断图像中画的是一只狗,图像压缩时去掉的信息只是一些无关紧要的信息,而留下的信息则是具有尺度不变性的特征,是最能表达图像的特征。
特征降维,我们知道一幅图像含有的信息是很大的,特征也很多,但是有些信息对于我们做图像任务时没有太多用途或者有重复,我们可以把这类冗余信息去除,把最重要的特征抽取出来,这也是池化操作的一大作用。
在一定程度上防止过拟合,更方便优化。

在这里插入图片描述
在这里插入图片描述

3、全连接层

全连接层( Fully-Connected layer), 把所有局部特征结合变成全局特征,用来计算最后每一类的得分。全连接层往往在分类问题中用作网络的最后层,作用主要为将数据矩阵进行全连接,然后按照分类数量输出数据,在回归问题中,全连接层则可以省略,但是我们需要增加卷积层来对数据进行逆卷积操作。

4、CNN训练

在这里插入图片描述
前向传播阶段:
选取训练样本(x,y),将x输入网络中。随机初始化权值(一般情况下选取小数),信息从输入层经过一层一层的特征提取和转换,最后到达输出层,得到输出结果。

反向传播阶段:
输出结果与理想结果对比,计算全局性误差(即Loss)。得到的误差反向传递给不同层的神经元,按照“迭代法”调整权值和偏重,寻找全局性最优的结果。

通过大量图片去训练这个模型,通过前向传播和反向传播的方法,神经网络得到一个结果,将其和真实的结果进行比较误差计算(损失函数),我们的目标就是将损失函数降到最低,通过修改卷积核的参数和全连接每一层的权重来进行微调,使得损失函数最小。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/781803.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

spRAG框架学习小结

spRAG是什么 spRAG是一个针对非结构化数据的检索引擎。它特别擅长处理对密集文本的复杂查询&#xff0c;比如财务报告、法律文件和学术论文。有两种关键方法用于提高性能&#xff0c;超越了普通的RAG系统&#xff1a; 自动上下文&#xff08;AutoContext&#xff09;&#xff…

几款电脑端能够运行的AI大模型聊天客户端

Ollama Ollama 是一个用于在本地运行和管理大型语言模型的工具。它支持多种流行模型的下载和本地运行&#xff0c;包括 LLaMA-2、CodeLLaMA、Falcon 和 Mistral 。Ollama 提供了一个简单、轻量级和可扩展的解决方案&#xff0c;使得用户可以以最简单快速的方式在本地运行大模型…

中霖教育:二级建造师未注册还需要继续教育吗?

关键词&#xff1a;中霖教育怎么样&#xff0c;中霖教育口碑 如果通过了二级建造师考试但是没有注册&#xff0c;还用继续教育吗? 1. 未注册的二级建造师 二级建造师在其证书获取后三年内没有进行注册时&#xff0c;在申请初始注册之前必须完成规定的本专业继续教育课程。 …

计算样本之间的相似度

文章目录 前言一、距离度量1.1 欧几里得距离&#xff08;Euclidean Distance&#xff09;1.2 曼哈顿距离&#xff08;Manhattan Distance&#xff09;1.3 切比雪夫距离&#xff08;Chebyshev Distance&#xff09;1.4 闵可夫斯基距离&#xff08;Minkowski Distance&#xff09…

Java里的Arrary详解

DK 中提供了一个专门用于操作数组的工具类&#xff0c;即Arrays 类&#xff0c;位于java.util 包中。该类提供了一些列方法来操作数组&#xff0c;如排序、复制、比较、填充等&#xff0c;用户直接调用这些方法即可不需要自己编码实现&#xff0c;降低了开发难度。 java.util.…

时序预测 | Matlab实现TCN-Transformer的时间序列预测

时序预测 | Matlab实现TCN-Transformer的时间序列预测 目录 时序预测 | Matlab实现TCN-Transformer的时间序列预测效果一览基本介绍程序设计 效果一览 基本介绍 基于TCN-Transformer模型的时间序列预测&#xff0c;可以用于做光伏发电功率预测&#xff0c;风速预测&#xff0c;…

XSS平台的搭建

第一步&#xff1a;安装MySQL 数据库 因为xss平台涉及到使用mysql 数据库&#xff0c;在安装之前&#xff0c;先使用docker 安装mysql 数据库。 docker run --name mysqlserver -e MYSQL_ROOT_PASSWORD123 -d -i -p 3309:3306 mysql:5.6 第二步&#xff1a;安装xssplatform…

机械键盘如何挑选

机械键盘的选择是一个关键的决策&#xff0c;因为它直接影响到我们每天的打字体验。在选择机械键盘时&#xff0c;有几个关键因素需要考虑。首先是键盘的键轴类型。常见的键轴类型包括蓝轴、红轴、茶轴和黑轴等。不同的键轴类型具有不同的触发力、触发点和声音。蓝轴通常具有明…

「多模态大模型」解读 | 突破单一文本模态局限

编者按&#xff1a;理想状况下&#xff0c;世界上的万事万物都能以文字的形式呈现&#xff0c;如此一来&#xff0c;我们似乎仅凭大语言模型&#xff08;LLMs&#xff09;就能完成所有任务。然而&#xff0c;理想很丰满&#xff0c;现实很骨感——数据形态远不止文字一种&#…

2024年06月CCF-GESP编程能力等级认证Python编程二级真题解析

本文收录于专栏《Python等级认证CCF-GESP真题解析》&#xff0c;专栏总目录&#xff1a;点这里&#xff0c;订阅后可阅读专栏内所有文章。 一、单选题&#xff08;每题 2 分&#xff0c;共 30 分&#xff09; 第 1 题 小杨父母带他到某培训机构给他报名参加CCF组织的GESP认证…

GESP C++一级真题

PDF图片1-7 点赞❤️关注&#x1f60d;收藏⭐️ 互粉必回&#x1f64f;&#x1f64f;&#x1f64f;

【Linux】打包命令——tar

打包和压缩 虽然打包和压缩都涉及将多个文件组合成单个实体&#xff0c;但它们之间存在重要差异。 打包和压缩的区别&#xff1a; 打包是将多个文件或目录组合在一起&#xff0c;但不对其进行压缩。这意味着打包后的文件大小可能与原始文件相同或更大。此外&#xff0c;打包…

上位机图像处理和嵌入式模块部署(mcu项目1:假设用51单片机实现)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 到目前位置&#xff0c;我们借助于qt和apm32 mcu芯片&#xff0c;实现了大多数功能。大家如果回过头来看&#xff0c;其实这些功能并不复杂。从固件…

现场Live震撼!OmAgent框架强势开源!行业应用已全面开花

第一个提出自动驾驶并进行研发的公司是Google&#xff0c;巧的是&#xff0c;它发布的Transformer模型也为今天的大模型发展奠定了基础。 自动驾驶已经完成从概念到现实的华丽转变&#xff0c;彻底重塑了传统驾车方式&#xff0c;而大模型行业正在经历的&#xff0c;恰如自动驾…

Canvas:掌握颜色线条与图像文字设置

想象一下&#xff0c;用几行代码就能创造出如此逼真的图像和动画&#xff0c;仿佛将艺术与科技完美融合&#xff0c;前端开发的Canvas技术正是这个数字化时代中最具魔力的一环&#xff0c;它不仅仅是网页的一部分&#xff0c;更是一个无限创意的画布&#xff0c;一个让你的想象…

计算云服务2

第二章 裸金属服务器 什么是裸金属服务器(BMS) 裸金属服务器(Bare Metal Server&#xff0c;BMS)是一款兼具虚拟机弹性和物理机性能的计算类服务为用户以及相关企业提供专属的云上物理服务器&#xff0c;为核心数据库、关键应用系统、高性能计算、大数据等业务提供卓越的计算…

PCIe 规范核心知识线介绍

0&#xff0c;总体Topology x86 处理器系统中 PCIe的拓扑结构&#xff1a; PCIe Switch的总体结构 1&#xff0c;PCIe 枚举 BIOS 负责枚举与分派配置设备的 BusID[7:0] : DeviceID[4:0] : FunctionID[2:0]; cpu先识别 Host-PCI-Bridge&#xff0c;其下是Bus0&#xff1b; 在…

Linux:DHCP服务配置

目录 一、DHCP概述以及DHCP的好处 1.1、概述 1.2、DHCP的好处 二、DHCP的模式与分配方式 2.1、模式 2.2、DHCP的分配方式 三、DHCP工作原理 四、安装DHCP服务 五、DHCP局部配置并且测试 5.1、subnet 网段声明 5.2、客户机预留指定的固定ip地址 一、DHCP概述以及DHCP…

在CentOS7云服务器下搭建MySQL网络服务详细教程

目录 0.说明 1.卸载不要的环境 1.1查看当前环境存在的服务mysql或者mariadb 1.2卸载不要的环境 1.2.1先关闭相关的服务 1.2.2查询曾经下载的安装包 1.2.3卸载安装包 1.2.4检查是否卸载干净 2.配置MySQLyum源 2.1获取mysql关外yum源 2.2 查看当前系统结合系统配置yum…

EN-SLAM:Implicit Event-RGBD Neural SLAM解读

论文路径&#xff1a;https://arxiv.org/pdf/2311.11013.pdf 目录 1 论文背景 2 论文概述 2.1 神经辐射场&#xff08;NeRF&#xff09; 2.2 事件相机&#xff08;Event Camera&#xff09; 2.3 事件时间聚合优化策略&#xff08;ETA&#xff09; 2.4 可微分的CRF渲染技术…