1分钟了解LangChain是什么?

一: LangChain介绍

LangChain 是一个基于大型语言模型(LLM)开发应用程序的框架, 它旨在简化语言模型应用的开发流程,特别是在构建对话系统和其他基于语言的AI解决方案时.目标是将复杂的语言模型技术转化为可通过简单API调用实现的功能,从而使开发者能够更加专注于创造性的解决方案设计。高效地解决了开发大语言模型应用的痛点问题。

        Langchain 最主要的特色是可以将 LLM 应用研发过程中的交互 Prompt、LLM 模型调用、语言模型与环境互动的自适应等方式融为一体。LangChain提供两种程序语言的实作版本,Python版与Javascript版

LangChain中文网: LangChain中文网:500页中文文档教程,助力大模型LLM应用开发从入门到精通


二: LangChain 解决了什么问题

通过上面的概念,我们可以看到 LangChain 实际上是基于大语言模型上层的一个应用框架,那么 LangChain 具体解决了大模型时代的哪些问题才让他脱颖而出呢。具体来说,主要有以下几个方面:

  • 模型接口的统一

现在的大模型除了大家熟知的 ChatGPT,还有 Meta 开源的 LLaMA,清华大学的 GLM 等,这些模型的使用方法包括 api 和推理方式都相差甚远,如果你想从使用 ChatGPT 切换到调用 LLaMA,需要花费不少的精力去开发前置的模型使用模块,会有大量重复繁琐的工作。而 LangChain 对好多常见的 API 和大模型做了封装,可以直接拿来就用,节省了大量的时间。

  • 打破了 LLM 提示词和返回内容 token 限制,为最新知识的检索、推理提供了更大的前景

像 ChatGPT 这样的语言模型,数据只更新到 2021 年,如何让大模型回答和学习到之后的知识就是一个很重要的问题。而且 ChatGPT 的 API 是有提示词和返回内容的限制的,3.5 是 4k,4 则是 8k,而我们往往需要从自己的数据、自己的文档中获取特定的信息,这可能是一本书、一个 PDF 文件、一个带有专有信息的数据库。这些信息的 token 数量会远高于 4k 的阈值,直接使用大模型是无法获取到相应的知识的,因为超过阈值的信息就被截断了。

LangChain 提供了对向量数据库的支持,能够把超长的 txt、pdf 等通过大模型转换为 embedding 的形式,存到向量数据库中,然后利用数据库进行检索。这样就可以支持更多长度的输入,解放了 LLM 的优势。

三: LangChain 能做什么

  • 个人助理,记住用户的行为数据并提供建议
  • 聊天机器人,语言模型天然擅长生成文本
  • 生成式问答
  • 文档回答,针对特定的问题回答
  • 文本摘要,从文本中提取信息
  • 代码理解,理解代码的意图
  • 文本总结,从较长的文本中总结信息,利用 LLM 和 embedding 对长文档进行压缩和总结

四: LangChain 核心模块

  • Tools:工具,作为大模型函数的工具,被大模型调用。
  • Models模型,是各种类型的模型和模型集成。
  • Text splitters:文本切割器,RAG的时候用到。
  • Output parsers:输出解析器负责将LLM的输出解析为更结构化的格式。
  • Document loader:文档加载器负责从各种来源加载文档。
  • Verctorstores:向量存储是可以有效存储和检索嵌入的数据库。做智能客服和知识库的时候用到。
  • Prompts:提示,包括提示管理、提示优化和提示序列化。
  • Memory:记忆,用来保存和模型交互时的上下文状态。
  • Indexes:索引,用来结构化文档,以便和模型交互。包括文档加载程序、向量存储器、文本分割器和检索器等。
  • Agents:代理,决定模型采取哪些行动,执行并且观察流程,直到完成为止。
  • Chains:链,一系列对各种组件的调用。

五: LangChain 工作流程

Langchain 提供各类模块支持,按照复杂性依次是模块、提示、内存、索引、链、代理,为了快速地理解使用流程及安全问题,我们可以通过本地知识库问答的这类应用来了解 Langchain 的工作流程。

如下图所示,从 1、2、3、4、5、6 阶段看,本地各类文档数据可以通过 Text 类划分为长度更短的段落,利用 embedding 模型进行向量化,存入向量数据库。8、9、10 阶段是把提问进行语义的向量化处理,经过处理后的 query 向量和已有文章段落向量进行匹配。11、12 阶段是可以设定检索匹配度最高的 top-K 个段落,通过把 K 个段落和用户提问组合输出到提示词的模版当中。13、14、15 阶段是最终输送给语言模型的 Prompt 和语言模型的输出。

从安全攻防角度看,上述各阶段的安全问题主要存在于如何通过控制输入信息来影响模型输出内容,相关影响的阶段主要是 8、9、10 阶段和 13、14、15 阶段。

图片

链(Chain)是 langchain 中连接输入输出的应用角色,主要应用于 13、14、15 阶段。开发者可以基于链快速实现输入 prompt 预处理、输出后处理等操作,开发一个简单的 LLM 应用。langchain 内也实现了 LLMBashChain、LLMMathChain、SQLDatabaseChain 等链,开发者可以直接调用这些链,完成大模型应用的快速部署。

参考资料:

深入剖析大模型安全问题:Langchain框架的隐藏风险-腾讯新闻

https://zhuanlan.zhihu.com/p/663369695

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/780235.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

第T4周:使用TensorFlow实现猴痘病识别

🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 文章目录 一、前期工作1.设置GPU(如果使用的是CPU可以忽略这步)2. 导入数据3. 查看数据 二、数据预处理1、加载数据2、数据可视化3、再…

Splunk Enterprise 中的严重漏洞允许远程执行代码

Splunk 是搜索、监控和分析机器生成大数据的软件领先提供商,为其旗舰产品 Splunk Enterprise 发布了紧急安全更新。 这些更新解决了几个构成重大安全风险的关键漏洞,包括远程代码执行 (RCE) 的可能性。 受影响的版本包括 * 9.0.x、9.1.x 和 9.2.x&…

竞赛 深度学习OCR中文识别 - opencv python

文章目录 0 前言1 课题背景2 实现效果3 文本区域检测网络-CTPN4 文本识别网络-CRNN5 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 **基于深度学习OCR中文识别系统 ** 该项目较为新颖,适合作为竞赛课题方向,…

STM32-SPI和W25Q64

本内容基于江协科技STM32视频学习之后整理而得。 文章目录 1. SPI(串行外设接口)通信1.1 SPI通信简介1.2 硬件电路1.3 移位示意图1.4 SPI时序基本单元1.5 SPI时序1.5.1 发送指令1.5.2 指定地址写1.5.3 指定地址读 2. W25Q642.1 W25Q64简介2.2 硬件电路2…

【JVM系列】Full GC(完全垃圾回收)的原因及分析

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

【小沐学Python】在线web数据可视化Python库:Bokeh

文章目录 1、简介2、安装3、测试3.1 创建折线图3.2 添加和自定义渲染器3.3 添加图例、文本和批注3.4 自定义您的绘图3.5 矢量化字形属性3.6 合并绘图3.7 显示和导出3.8 提供和筛选数据3.9 使用小部件3.10 嵌入Bokeh图表到Flask应用程序 结语 1、简介 https://bokeh.org/ https…

从0到1:培训老师预约小程序开发笔记二

背景调研 培训老师预约小程序: 教师和学生可以更便捷地安排课程,并提升教学质量和学习效果,使之成为管理和提升教学效果的强大工具。培训老师可以在小程序上设置自己的可预约时间,学员可以根据老师的日程安排选择合适的时间进行预…

【HICE】dns正向解析

1.编辑仓库 2.挂载 3.下载软件包 4.编辑named.conf 5.编辑named.haha 6.重启服务 7.验证本地域名是否解析

Mysql 数据库主从复制-CSDN

查询两台虚拟机的IP 主虚拟机IP 从虚拟机IP服务 修改对应的配置文件 查询对应配置文件的命令 find / -name my.cnf编辑对应的配置文件 主 my.cnf (部分配置) [mysqld] ########basic settings######## server_id 1 log_bin /var/log/mysql/mysql-…

leetcode 709. 转换成小写字母

leetcode 709. 转换成小写字母 题解 class Solution { public:string toLowerCase(string s) {string ans;for (int i 0; i < s.size(); i) {if (s[i] > A && s[i] < Z) {s[i] 32;}ans s[i];}return ans;} };

室内定位可视化:精准导航与实时位置展示

通过图扑室内定位可视化技术&#xff0c;提供精准的导航服务和实时位置展示&#xff0c;帮助用户高效找到目标地点&#xff0c;提升空间管理和资源配置的效率与体验。

【昇思25天学习打卡营打卡指南-第十九天】基于MobileNetv2的垃圾分类

CycleGAN图像风格迁移互换 模型介绍 模型简介 CycleGAN(Cycle Generative Adversarial Network) 即循环对抗生成网络&#xff0c;来自论文 Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks 。该模型实现了一种在没有配对示例的情况下学习…

go语言的异常处理机制

error 在go语言中&#xff0c;异常被定义为实现了error接口的类型&#xff0c;error接口只定义了一个返回string类型Error&#xff08;&#xff09;方法&#xff0c;任何实现了Error()方法的类型都可以被定义为异常&#xff0c;以下是一个自定义的异常类型&#xff1a; typ…

【零基础】学JS

喝下这碗鸡汤 “知识就是力量。” - 弗朗西斯培根 1.三元运算符 目标:能利用三元运算符执行满足条件的语句 使用场景:其实是比if双分支更简单的写法&#xff0c;可以使用三元表达式 语法&#xff1a;条件 ? 满足条件的执行代码 : 不满足条件执行的代码 接下来用一个小案例来展…

昇思25天学习打卡营第十四天|Pix2Pix实现图像转换

训练营进入第十四天&#xff0c;今天学的内容是Pix2Pix图像转换&#xff0c;记录一下学习内容&#xff1a; Pix2Pix概述 Pix2Pix是基于条件生成对抗网络&#xff08;cGAN, Condition Generative Adversarial Networks &#xff09;实现的一种深度学习图像转换模型&#xff0c…

读书笔记-《魔鬼经济学》

这是一本非常有意思的经济学启蒙书&#xff0c;作者探讨了许多问题&#xff0c;并通过数据找到答案。 我们先来看看作者眼中的“魔鬼经济学”是什么&#xff0c;再选一个贴近我们生活的例子进行阐述。 01 魔鬼经济学 中心思想&#xff1a;假如道德代表人类对世界运转方式的期…

Vue 3集成krpano 全景图展示

Vue 3集成krpano 全景图展示 星光云全景系统源码 VR全景体验地址 星光云全景VR系统 将全景krpano静态资源文件vtour放入vue项目中 导入vue之前需要自己制作一个全景图 需要借助官方工具进行制作 工具下载地址&#xff1a;krpano工具下载地址 注意事项&#xff1a;vuecli…

LRU缓存算法设计

LRU 缓存算法的核⼼数据结构就是哈希链表&#xff0c;双向链表和哈希表的结合体。这个数据结构⻓这样&#xff1a; 创建的需要有两个方法&#xff0c;一个是get方法&#xff0c;一个是put方法。 一些问题&#xff1a;为什么需要使用双向链表呢&#xff1f;因为删除链表的本身&…

2-26 基于matlab开发的制冷循环模型

基于matlab开发的制冷循环模型。Simscape两相流域中的制冷循环模型&#xff0c;在simulink中完成多循环温度控制。程序已调通&#xff0c;可直接运行。 2-26 制冷循环模型 Simscape两相流域 - 小红书 (xiaohongshu.com)

Web3D引擎,three.js堪称扛把子,Babylon.js差点意思。

涉及到Web3D开发&#xff0c;Three.js和Babylon.js是两个备受推崇的引擎。它们都是基于WebGL的开源3D引擎&#xff0c;用于创建交互式的3D图形应用程序&#xff0c;但要细论起来&#xff0c;three.js普及度远超Babylon .js. 一、二者的介绍 Three.js&#xff1a; Three.js 是一…