【昇思25天学习打卡营打卡指南-第十九天】基于MobileNetv2的垃圾分类

CycleGAN图像风格迁移互换

模型介绍

模型简介

CycleGAN(Cycle Generative Adversarial Network) 即循环对抗生成网络,来自论文 Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks 。该模型实现了一种在没有配对示例的情况下学习将图像从源域 X 转换到目标域 Y 的方法。

该模型一个重要应用领域是域迁移(Domain Adaptation),可以通俗地理解为图像风格迁移。其实在 CycleGAN 之前,就已经有了域迁移模型,比如 Pix2Pix ,但是 Pix2Pix 要求训练数据必须是成对的,而现实生活中,要找到两个域(画风)中成对出现的图片是相当困难的,因此 CycleGAN 诞生了,它只需要两种域的数据,而不需要他们有严格对应关系,是一种新的无监督的图像迁移网络。

模型结构

CycleGAN 网络本质上是由两个镜像对称的 GAN 网络组成,其结构如下图所示(图片来源于原论文):

image.png

为了方便理解,这里以苹果和橘子为例介绍。上图中 X X X 可以理解为苹果, Y Y Y 为橘子; G G G 为将苹果生成橘子风格的生成器, F F F 为将橘子生成的苹果风格的生成器, D X D_{X} DX D Y D_{Y} DY 为其相应判别器,具体生成器和判别器的结构可见下文代码。模型最终能够输出两个模型的权重,分别将两种图像的风格进行彼此迁移,生成新的图像。

该模型一个很重要的部分就是损失函数,在所有损失里面循环一致损失(Cycle Consistency Loss)是最重要的。循环损失的计算过程如下图所示(图片来源于原论文):

image.png

图中苹果图片 x x x 经过生成器 G G G 得到伪橘子 Y ^ \hat{Y} Y^,然后将伪橘子 Y ^ \hat{Y} Y^ 结果送进生成器 F F F 又产生苹果风格的结果 x ^ \hat{x} x^,最后将生成的苹果风格结果 x ^ \hat{x} x^ 与原苹果图片 x x x 一起计算出循环一致损失,反之亦然。循环损失捕捉了这样的直觉,即如果我们从一个域转换到另一个域,然后再转换回来,我们应该到达我们开始的地方。详细的训练过程见下文代码。

数据集

本案例使用的数据集里面的图片来源于ImageNet,该数据集共有17个数据包,本文只使用了其中的苹果橘子部分。图像被统一缩放为256×256像素大小,其中用于训练的苹果图片996张、橘子图片1020张,用于测试的苹果图片266张、橘子图片248张。

这里对数据进行了随机裁剪、水平随机翻转和归一化的预处理,为了将重点聚焦到模型,此处将数据预处理后的结果转换为 MindRecord 格式的数据,以省略大部分数据预处理的代码。

数据集下载

使用 download 接口下载数据集,并将下载后的数据集自动解压到当前目录下。数据下载之前需要使用 pip install download 安装 download 包。

from download import download

url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/models/application/CycleGAN_apple2orange.zip"

download(url, ".", kind="zip", replace=True)

数据集加载

使用 MindSpore 的 MindDataset 接口读取和解析数据集。

from mindspore.dataset import MindDataset

# 读取MindRecord格式数据
name_mr = "./CycleGAN_apple2orange/apple2orange_train.mindrecord"
data = MindDataset(dataset_files=name_mr)
print("Datasize: ", data.get_dataset_size())

batch_size = 1
dataset = data.batch(batch_size)
datasize = dataset.get_dataset_size()

可视化

通过 create_dict_iterator 函数将数据转换成字典迭代器,然后使用 matplotlib 模块可视化部分训练数据。

import numpy as np
import matplotlib.pyplot as plt

mean = 0.5 * 255
std = 0.5 * 255

plt.figure(figsize=(12, 5), dpi=60)
for i, data in enumerate(dataset.create_dict_iterator()):
    if i < 5:
        show_images_a = data["image_A"].asnumpy()
        show_images_b = data["image_B"].asnumpy()

        plt.subplot(2, 5, i+1)
        show_images_a = (show_images_a[0] * std + mean).astype(np.uint8).transpose((1, 2, 0))
        plt.imshow(show_images_a)
        plt.axis("off")

        plt.subplot(2, 5, i+6)
        show_images_b = (show_images_b[0] * std + mean).astype(np.uint8).transpose((1, 2, 0))
        plt.imshow(show_images_b)
        plt.axis("off")
    else:
        break
plt.show()

image.png

构建生成器

本案例生成器的模型结构参考的 ResNet 模型的结构,参考原论文,对于128×128大小的输入图片采用6个残差块相连,图片大小为256×256以上的需要采用9个残差块相连,所以本文网络有9个残差块相连,超参数 n_layers 参数控制残差块数。

生成器的结构如下所示:

image.png

具体的模型结构请参照下文代码:

import mindspore.nn as nn
import mindspore.ops as ops
from mindspore.common.initializer import Normal

weight_init = Normal(sigma=0.02)

class ConvNormReLU(nn.Cell):
    def __init__(self, input_channel, out_planes, kernel_size=4, stride=2, alpha=0.2, norm_mode='instance',
                 pad_mode='CONSTANT', use_relu=True, padding=None, transpose=False):
        super(ConvNormReLU, self).__init__()
        norm = nn.BatchNorm2d(out_planes)
        if norm_mode == 'instance':
            norm = nn.BatchNorm2d(out_planes, affine=False)
        has_bias = (norm_mode == 'instance')
        if padding is None:
            padding = (kernel_size - 1) // 2
        if pad_mode == 'CONSTANT':
            if transpose:
                conv = nn.Conv2dTranspose(input_channel, out_planes, kernel_size, stride, pad_mode='same',
                                          has_bias=has_bias, weight_init=weight_init)
            else:
                conv = nn.Conv2d(input_channel, out_planes, kernel_size, stride, pad_mode='pad',
                                 has_bias=has_bias, padding=padding, weight_init=weight_init)
            layers = [conv, norm]
        else:
            paddings = ((0, 0), (0, 0), (padding, padding), (padding, padding))
            pad = nn.Pad(paddings=paddings, mode=pad_mode)
            if transpose:
                conv = nn.Conv2dTranspose(input_channel, out_planes, kernel_size, stride, pad_mode='pad',
                                          has_bias=has_bias, weight_init=weight_init)
            else:
                conv = nn.Conv2d(input_channel, out_planes, kernel_size, stride, pad_mode='pad',
                                 has_bias=has_bias, weight_init=weight_init)
            layers = [pad, conv, norm]
        if use_relu:
            relu = nn.ReLU()
            if alpha > 0:
                relu = nn.LeakyReLU(alpha)
            layers.append(relu)
        self.features = nn.SequentialCell(layers)

    def construct(self, x):
        output = self.features(x)
        return output


class ResidualBlock(nn.Cell):
    def __init__(self, dim, norm_mode='instance', dropout=False, pad_mode="CONSTANT"):
        super(ResidualBlock, self).__init__()
        self.conv1 = ConvNormReLU(dim, dim, 3, 1, 0, norm_mode, pad_mode)
        self.conv2 = ConvNormReLU(dim, dim, 3, 1, 0, norm_mode, pad_mode, use_relu=False)
        self.dropout = dropout
        if dropout:
            self.dropout = nn.Dropout(p=0.5)

    def construct(self, x):
        out = self.conv1(x)
        if self.dropout:
            out = self.dropout(out)
        out = self.conv2(out)
        return x + out


class ResNetGenerator(nn.Cell):
    def __init__(self, input_channel=3, output_channel=64, n_layers=9, alpha=0.2, norm_mode='instance', dropout=False,
                 pad_mode="CONSTANT"):
        super(ResNetGenerator, self).__init__()
        self.conv_in = ConvNormReLU(input_channel, output_channel, 7, 1, alpha, norm_mode, pad_mode=pad_mode)
        self.down_1 = ConvNormReLU(output_channel, output_channel * 2, 3, 2, alpha, norm_mode)
        self.down_2 = ConvNormReLU(output_channel * 2, output_channel * 4, 3, 2, alpha, norm_mode)
        layers = [ResidualBlock(output_channel * 4, norm_mode, dropout=dropout, pad_mode=pad_mode)] * n_layers
        self.residuals = nn.SequentialCell(layers)
        self.up_2 = ConvNormReLU(output_channel * 4, output_channel * 2, 3, 2, alpha, norm_mode, transpose=True)
        self.up_1 = ConvNormReLU(output_channel * 2, output_channel, 3, 2, alpha, norm_mode, transpose=True)
        if pad_mode == "CONSTANT":
            self.conv_out = nn.Conv2d(output_channel, 3, kernel_size=7, stride=1, pad_mode='pad',
                                      padding=3, weight_init=weight_init)
        else:
            pad = nn.Pad(paddings=((0, 0), (0, 0), (3, 3), (3, 3)), mode=pad_mode)
            conv = nn.Conv2d(output_channel, 3, kernel_size=7, stride=1, pad_mode='pad', weight_init=weight_init)
            self.conv_out = nn.SequentialCell([pad, conv])

    def construct(self, x):
        x = self.conv_in(x)
        x = self.down_1(x)
        x = self.down_2(x)
        x = self.residuals(x)
        x = self.up_2(x)
        x = self.up_1(x)
        output = self.conv_out(x)
        return ops.tanh(output)

# 实例化生成器
net_rg_a = ResNetGenerator()
net_rg_a.update_parameters_name('net_rg_a.')

net_rg_b = ResNetGenerator()
net_rg_b.update_parameters_name('net_rg_b.')

构建判别器

判别器其实是一个二分类网络模型,输出判定该图像为真实图的概率。网络模型使用的是 Patch 大小为 70x70 的 PatchGANs 模型。通过一系列的 Conv2dBatchNorm2dLeakyReLU 层对其进行处理,最后通过 Sigmoid 激活函数得到最终概率。

# 定义判别器
class Discriminator(nn.Cell):
    def __init__(self, input_channel=3, output_channel=64, n_layers=3, alpha=0.2, norm_mode='instance'):
        super(Discriminator, self).__init__()
        kernel_size = 4
        layers = [nn.Conv2d(input_channel, output_channel, kernel_size, 2, pad_mode='pad', padding=1, weight_init=weight_init),
                  nn.LeakyReLU(alpha)]
        nf_mult = output_channel
        for i in range(1, n_layers):
            nf_mult_prev = nf_mult
            nf_mult = min(2 ** i, 8) * output_channel
            layers.append(ConvNormReLU(nf_mult_prev, nf_mult, kernel_size, 2, alpha, norm_mode, padding=1))
        nf_mult_prev = nf_mult
        nf_mult = min(2 ** n_layers, 8) * output_channel
        layers.append(ConvNormReLU(nf_mult_prev, nf_mult, kernel_size, 1, alpha, norm_mode, padding=1))
        layers.append(nn.Conv2d(nf_mult, 1, kernel_size, 1, pad_mode='pad', padding=1, weight_init=weight_init))
        self.features = nn.SequentialCell(layers)

    def construct(self, x):
        output = self.features(x)
        return output

# 判别器初始化
net_d_a = Discriminator()
net_d_a.update_parameters_name('net_d_a.')

net_d_b = Discriminator()
net_d_b.update_parameters_name('net_d_b.')

优化器和损失函数

根据不同模型需要单独的设置优化器,这是训练过程决定的。

对生成器 G G G 及其判别器 D Y D_{Y} DY ,目标损失函数定义为:

L G A N ( G , D Y , X , Y ) = E y − p d a t a ( y ) [ l o g D Y ( y ) ] + E x − p d a t a ( x ) [ l o g ( 1 − D Y ( G ( x ) ) ) ] L_{GAN}(G,D_Y,X,Y)=E_{y-p_{data}(y)}[logD_Y(y)]+E_{x-p_{data}(x)}[log(1-D_Y(G(x)))] LGAN(G,DY,X,Y)=Eypdata(y)[logDY(y)]+Expdata(x)[log(1DY(G(x)))]

其中 G G G 试图生成看起来与 Y Y Y 中的图像相似的图像 G ( x ) G(x) G(x) ,而 D Y D_{Y} DY 的目标是区分翻译样本 G ( x ) G(x) G(x) 和真实样本 y y y ,生成器的目标是最小化这个损失函数以此来对抗判别器。即 $ min_{G} max_{D_{Y}}L_{GAN}(G,D_{Y} ,X,Y )$ 。

单独的对抗损失不能保证所学函数可以将单个输入映射到期望的输出,为了进一步减少可能的映射函数的空间,学习到的映射函数应该是周期一致的,例如对于 X X X 的每个图像 x x x ,图像转换周期应能够将 x x x 带回原始图像,可以称之为正向循环一致性,即 x → G ( x ) → F ( G ( x ) ) ≈ x x→G(x)→F(G(x))\approx x xG(x)F(G(x))x 。对于 Y Y Y ,类似的 x → G ( x ) → F ( G ( x ) ) ≈ x x→G(x)→F(G(x))\approx x xG(x)F(G(x))x 。可以理解采用了一个循环一致性损失来激励这种行为。

循环一致损失函数定义如下:

L c y c ( G , F ) = E x − p d a t a ( x ) [ ∥ F ( G ( x ) ) − x ∥ 1 ] + E y − p d a t a ( y ) [ ∥ G ( F ( y ) ) − y ∥ 1 ] L_{cyc}(G,F)=E_{x-p_{data}(x)}[\Vert F(G(x))-x\Vert_{1}]+E_{y-p_{data}(y)}[\Vert G(F(y))-y\Vert_{1}] Lcyc(G,F)=Expdata(x)[F(G(x))x1]+Eypdata(y)[G(F(y))y1]

循环一致损失能够保证重建图像 F ( G ( x ) ) F(G(x)) F(G(x)) 与输入图像 x x x 紧密匹配。

# 构建生成器,判别器优化器
optimizer_rg_a = nn.Adam(net_rg_a.trainable_params(), learning_rate=0.0002, beta1=0.5)
optimizer_rg_b = nn.Adam(net_rg_b.trainable_params(), learning_rate=0.0002, beta1=0.5)

optimizer_d_a = nn.Adam(net_d_a.trainable_params(), learning_rate=0.0002, beta1=0.5)
optimizer_d_b = nn.Adam(net_d_b.trainable_params(), learning_rate=0.0002, beta1=0.5)

# GAN网络损失函数,这里最后一层不使用sigmoid函数
loss_fn = nn.MSELoss(reduction='mean')
l1_loss = nn.L1Loss("mean")

def gan_loss(predict, target):
    target = ops.ones_like(predict) * target
    loss = loss_fn(predict, target)
    return loss

前向计算

搭建模型前向计算损失的过程,过程如下代码。

为了减少模型振荡[1],这里遵循 Shrivastava 等人的策略[2],使用生成器生成图像的历史数据而不是生成器生成的最新图像数据来更新鉴别器。这里创建 image_pool 函数,保留了一个图像缓冲区,用于存储生成器生成前的50个图像。

import mindspore as ms

# 前向计算

def generator(img_a, img_b):
    fake_a = net_rg_b(img_b)
    fake_b = net_rg_a(img_a)
    rec_a = net_rg_b(fake_b)
    rec_b = net_rg_a(fake_a)
    identity_a = net_rg_b(img_a)
    identity_b = net_rg_a(img_b)
    return fake_a, fake_b, rec_a, rec_b, identity_a, identity_b

lambda_a = 10.0
lambda_b = 10.0
lambda_idt = 0.5

def generator_forward(img_a, img_b):
    true = Tensor(True, dtype.bool_)
    fake_a, fake_b, rec_a, rec_b, identity_a, identity_b = generator(img_a, img_b)
    loss_g_a = gan_loss(net_d_b(fake_b), true)
    loss_g_b = gan_loss(net_d_a(fake_a), true)
    loss_c_a = l1_loss(rec_a, img_a) * lambda_a
    loss_c_b = l1_loss(rec_b, img_b) * lambda_b
    loss_idt_a = l1_loss(identity_a, img_a) * lambda_a * lambda_idt
    loss_idt_b = l1_loss(identity_b, img_b) * lambda_b * lambda_idt
    loss_g = loss_g_a + loss_g_b + loss_c_a + loss_c_b + loss_idt_a + loss_idt_b
    return fake_a, fake_b, loss_g, loss_g_a, loss_g_b, loss_c_a, loss_c_b, loss_idt_a, loss_idt_b

def generator_forward_grad(img_a, img_b):
    _, _, loss_g, _, _, _, _, _, _ = generator_forward(img_a, img_b)
    return loss_g

def discriminator_forward(img_a, img_b, fake_a, fake_b):
    false = Tensor(False, dtype.bool_)
    true = Tensor(True, dtype.bool_)
    d_fake_a = net_d_a(fake_a)
    d_img_a = net_d_a(img_a)
    d_fake_b = net_d_b(fake_b)
    d_img_b = net_d_b(img_b)
    loss_d_a = gan_loss(d_fake_a, false) + gan_loss(d_img_a, true)
    loss_d_b = gan_loss(d_fake_b, false) + gan_loss(d_img_b, true)
    loss_d = (loss_d_a + loss_d_b) * 0.5
    return loss_d

def discriminator_forward_a(img_a, fake_a):
    false = Tensor(False, dtype.bool_)
    true = Tensor(True, dtype.bool_)
    d_fake_a = net_d_a(fake_a)
    d_img_a = net_d_a(img_a)
    loss_d_a = gan_loss(d_fake_a, false) + gan_loss(d_img_a, true)
    return loss_d_a

def discriminator_forward_b(img_b, fake_b):
    false = Tensor(False, dtype.bool_)
    true = Tensor(True, dtype.bool_)
    d_fake_b = net_d_b(fake_b)
    d_img_b = net_d_b(img_b)
    loss_d_b = gan_loss(d_fake_b, false) + gan_loss(d_img_b, true)
    return loss_d_b

# 保留了一个图像缓冲区,用来存储之前创建的50个图像
pool_size = 50
def image_pool(images):
    num_imgs = 0
    image1 = []
    if isinstance(images, Tensor):
        images = images.asnumpy()
    return_images = []
    for image in images:
        if num_imgs < pool_size:
            num_imgs = num_imgs + 1
            image1.append(image)
            return_images.append(image)
        else:
            if random.uniform(0, 1) > 0.5:
                random_id = random.randint(0, pool_size - 1)

                tmp = image1[random_id].copy()
                image1[random_id] = image
                return_images.append(tmp)

            else:
                return_images.append(image)
    output = Tensor(return_images, ms.float32)
    if output.ndim != 4:
        raise ValueError("img should be 4d, but get shape {}".format(output.shape))
    return output

计算梯度和反向传播

其中梯度计算也是分开不同的模型来进行的,详情见如下代码:

from mindspore import value_and_grad

# 实例化求梯度的方法
grad_g_a = value_and_grad(generator_forward_grad, None, net_rg_a.trainable_params())
grad_g_b = value_and_grad(generator_forward_grad, None, net_rg_b.trainable_params())

grad_d_a = value_and_grad(discriminator_forward_a, None, net_d_a.trainable_params())
grad_d_b = value_and_grad(discriminator_forward_b, None, net_d_b.trainable_params())

# 计算生成器的梯度,反向传播更新参数
def train_step_g(img_a, img_b):
    net_d_a.set_grad(False)
    net_d_b.set_grad(False)

    fake_a, fake_b, lg, lga, lgb, lca, lcb, lia, lib = generator_forward(img_a, img_b)

    _, grads_g_a = grad_g_a(img_a, img_b)
    _, grads_g_b = grad_g_b(img_a, img_b)
    optimizer_rg_a(grads_g_a)
    optimizer_rg_b(grads_g_b)

    return fake_a, fake_b, lg, lga, lgb, lca, lcb, lia, lib

# 计算判别器的梯度,反向传播更新参数
def train_step_d(img_a, img_b, fake_a, fake_b):
    net_d_a.set_grad(True)
    net_d_b.set_grad(True)

    loss_d_a, grads_d_a = grad_d_a(img_a, fake_a)
    loss_d_b, grads_d_b = grad_d_b(img_b, fake_b)

    loss_d = (loss_d_a + loss_d_b) * 0.5

    optimizer_d_a(grads_d_a)
    optimizer_d_b(grads_d_b)

    return loss_d

模型训练

训练分为两个主要部分:训练判别器和训练生成器,在前文的判别器损失函数中,论文采用了最小二乘损失代替负对数似然目标。

  • 训练判别器:训练判别器的目的是最大程度地提高判别图像真伪的概率。按照论文的方法需要训练判别器来最小化 E y − p d a t a ( y ) [ ( D ( y ) − 1 ) 2 ] E_{y-p_{data}(y)}[(D(y)-1)^2] Eypdata(y)[(D(y)1)2]

  • 训练生成器:如 CycleGAN 论文所述,我们希望通过最小化 E x − p d a t a ( x ) [ ( D ( G ( x ) − 1 ) 2 ] E_{x-p_{data}(x)}[(D(G(x)-1)^2] Expdata(x)[(D(G(x)1)2] 来训练生成器,以产生更好的虚假图像。

下面定义了生成器和判别器的训练过程:

import os
import time
import random
import numpy as np
from PIL import Image
from mindspore import Tensor, save_checkpoint
from mindspore import dtype

# 由于时间原因,epochs设置为1,可根据需求进行调整
epochs = 1
save_step_num = 80
save_checkpoint_epochs = 1
save_ckpt_dir = './train_ckpt_outputs/'

print('Start training!')

for epoch in range(epochs):
    g_loss = []
    d_loss = []
    start_time_e = time.time()
    for step, data in enumerate(dataset.create_dict_iterator()):
        start_time_s = time.time()
        img_a = data["image_A"]
        img_b = data["image_B"]
        res_g = train_step_g(img_a, img_b)
        fake_a = res_g[0]
        fake_b = res_g[1]

        res_d = train_step_d(img_a, img_b, image_pool(fake_a), image_pool(fake_b))
        loss_d = float(res_d.asnumpy())
        step_time = time.time() - start_time_s

        res = []
        for item in res_g[2:]:
            res.append(float(item.asnumpy()))
        g_loss.append(res[0])
        d_loss.append(loss_d)

        if step % save_step_num == 0:
            print(f"Epoch:[{int(epoch + 1):>3d}/{int(epochs):>3d}], "
                  f"step:[{int(step):>4d}/{int(datasize):>4d}], "
                  f"time:{step_time:>3f}s,\n"
                  f"loss_g:{res[0]:.2f}, loss_d:{loss_d:.2f}, "
                  f"loss_g_a: {res[1]:.2f}, loss_g_b: {res[2]:.2f}, "
                  f"loss_c_a: {res[3]:.2f}, loss_c_b: {res[4]:.2f}, "
                  f"loss_idt_a: {res[5]:.2f}, loss_idt_b: {res[6]:.2f}")

    epoch_cost = time.time() - start_time_e
    per_step_time = epoch_cost / datasize
    mean_loss_d, mean_loss_g = sum(d_loss) / datasize, sum(g_loss) / datasize

    print(f"Epoch:[{int(epoch + 1):>3d}/{int(epochs):>3d}], "
          f"epoch time:{epoch_cost:.2f}s, per step time:{per_step_time:.2f}, "
          f"mean_g_loss:{mean_loss_g:.2f}, mean_d_loss:{mean_loss_d :.2f}")

    if epoch % save_checkpoint_epochs == 0:
        os.makedirs(save_ckpt_dir, exist_ok=True)
        save_checkpoint(net_rg_a, os.path.join(save_ckpt_dir, f"g_a_{epoch}.ckpt"))
        save_checkpoint(net_rg_b, os.path.join(save_ckpt_dir, f"g_b_{epoch}.ckpt"))
        save_checkpoint(net_d_a, os.path.join(save_ckpt_dir, f"d_a_{epoch}.ckpt"))
        save_checkpoint(net_d_b, os.path.join(save_ckpt_dir, f"d_b_{epoch}.ckpt"))

print('End of training!')

模型推理

下面我们通过加载生成器网络模型参数文件来对原图进行风格迁移,结果中第一行为原图,第二行为对应生成的结果图。

%%time
import os
from PIL import Image
import mindspore.dataset as ds
import mindspore.dataset.vision as vision
from mindspore import load_checkpoint, load_param_into_net

# 加载权重文件
def load_ckpt(net, ckpt_dir):
    param_GA = load_checkpoint(ckpt_dir)
    load_param_into_net(net, param_GA)

g_a_ckpt = './CycleGAN_apple2orange/ckpt/g_a.ckpt'
g_b_ckpt = './CycleGAN_apple2orange/ckpt/g_b.ckpt'

load_ckpt(net_rg_a, g_a_ckpt)
load_ckpt(net_rg_b, g_b_ckpt)

# 图片推理
fig = plt.figure(figsize=(11, 2.5), dpi=100)
def eval_data(dir_path, net, a):

    def read_img():
        for dir in os.listdir(dir_path):
            path = os.path.join(dir_path, dir)
            img = Image.open(path).convert('RGB')
            yield img, dir

    dataset = ds.GeneratorDataset(read_img, column_names=["image", "image_name"])
    trans = [vision.Resize((256, 256)), vision.Normalize(mean=[0.5 * 255] * 3, std=[0.5 * 255] * 3), vision.HWC2CHW()]
    dataset = dataset.map(operations=trans, input_columns=["image"])
    dataset = dataset.batch(1)
    for i, data in enumerate(dataset.create_dict_iterator()):
        img = data["image"]
        fake = net(img)
        fake = (fake[0] * 0.5 * 255 + 0.5 * 255).astype(np.uint8).transpose((1, 2, 0))
        img = (img[0] * 0.5 * 255 + 0.5 * 255).astype(np.uint8).transpose((1, 2, 0))

        fig.add_subplot(2, 8, i+1+a)
        plt.axis("off")
        plt.imshow(img.asnumpy())

        fig.add_subplot(2, 8, i+9+a)
        plt.axis("off")
        plt.imshow(fake.asnumpy())

eval_data('./CycleGAN_apple2orange/predict/apple', net_rg_a, 0)
eval_data('./CycleGAN_apple2orange/predict/orange', net_rg_b, 4)
plt.show()

image.png

参考

[1] I. Goodfellow. NIPS 2016 tutorial: Generative ad-versarial networks. arXiv preprint arXiv:1701.00160,2016. 2, 4, 5

[2] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, R. Webb. Learning from simulated and unsupervised images through adversarial training. In CVPR, 2017. 3, 5, 6, 7

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/780222.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

go语言的异常处理机制

error 在go语言中&#xff0c;异常被定义为实现了error接口的类型&#xff0c;error接口只定义了一个返回string类型Error&#xff08;&#xff09;方法&#xff0c;任何实现了Error()方法的类型都可以被定义为异常&#xff0c;以下是一个自定义的异常类型&#xff1a; typ…

【零基础】学JS

喝下这碗鸡汤 “知识就是力量。” - 弗朗西斯培根 1.三元运算符 目标:能利用三元运算符执行满足条件的语句 使用场景:其实是比if双分支更简单的写法&#xff0c;可以使用三元表达式 语法&#xff1a;条件 ? 满足条件的执行代码 : 不满足条件执行的代码 接下来用一个小案例来展…

昇思25天学习打卡营第十四天|Pix2Pix实现图像转换

训练营进入第十四天&#xff0c;今天学的内容是Pix2Pix图像转换&#xff0c;记录一下学习内容&#xff1a; Pix2Pix概述 Pix2Pix是基于条件生成对抗网络&#xff08;cGAN, Condition Generative Adversarial Networks &#xff09;实现的一种深度学习图像转换模型&#xff0c…

读书笔记-《魔鬼经济学》

这是一本非常有意思的经济学启蒙书&#xff0c;作者探讨了许多问题&#xff0c;并通过数据找到答案。 我们先来看看作者眼中的“魔鬼经济学”是什么&#xff0c;再选一个贴近我们生活的例子进行阐述。 01 魔鬼经济学 中心思想&#xff1a;假如道德代表人类对世界运转方式的期…

Vue 3集成krpano 全景图展示

Vue 3集成krpano 全景图展示 星光云全景系统源码 VR全景体验地址 星光云全景VR系统 将全景krpano静态资源文件vtour放入vue项目中 导入vue之前需要自己制作一个全景图 需要借助官方工具进行制作 工具下载地址&#xff1a;krpano工具下载地址 注意事项&#xff1a;vuecli…

LRU缓存算法设计

LRU 缓存算法的核⼼数据结构就是哈希链表&#xff0c;双向链表和哈希表的结合体。这个数据结构⻓这样&#xff1a; 创建的需要有两个方法&#xff0c;一个是get方法&#xff0c;一个是put方法。 一些问题&#xff1a;为什么需要使用双向链表呢&#xff1f;因为删除链表的本身&…

2-26 基于matlab开发的制冷循环模型

基于matlab开发的制冷循环模型。Simscape两相流域中的制冷循环模型&#xff0c;在simulink中完成多循环温度控制。程序已调通&#xff0c;可直接运行。 2-26 制冷循环模型 Simscape两相流域 - 小红书 (xiaohongshu.com)

Web3D引擎,three.js堪称扛把子,Babylon.js差点意思。

涉及到Web3D开发&#xff0c;Three.js和Babylon.js是两个备受推崇的引擎。它们都是基于WebGL的开源3D引擎&#xff0c;用于创建交互式的3D图形应用程序&#xff0c;但要细论起来&#xff0c;three.js普及度远超Babylon .js. 一、二者的介绍 Three.js&#xff1a; Three.js 是一…

Android仿今日头条新闻(一)

新建一个侧边栏的文件&#xff0c;创建成功后直接运行。可以看到带滑动的侧边栏功能如图所示&#xff1a; 主体UI&#xff1a; 新闻UI的实现: 侧边栏&#xff1a; 更换一下颜色&#xff1a; 学习参考-浩宇开发

Objects365数据集介绍

Objects365数据集介绍 什么是Objects365数据集&#xff1f;数据集的规模与内容数据集的特点数据集下载 什么是Objects365数据集&#xff1f; Objects365是一个大规模、高质量的物体检测数据集。该数据集旨在推动物体检测技术的发展&#xff0c;特别是在真实世界场景下的应用。O…

STM32-01 推挽输出-点亮LED

本文以STM32中点亮LED为例&#xff0c;解读推挽输出的原理 推挽输出介绍 所谓的推挽输出&#xff0c;就是通过控制输出控制模块&#xff0c;打开或者关闭P-MOS或者N-MOS。 ─ 推挽模式下&#xff1a;输出寄存器上的’0’激活N-MOS&#xff0c;而输出寄存器上的’1’将激活P-M…

尚品汇-(十三)

&#xff08;1&#xff09;查询sku列表 在ManageService 中添加 /*** SKU分页列表* param pageParam* return*/ IPage<SkuInfo> getPage(Page<SkuInfo> pageParam);接口实现类 Override public IPage<SkuInfo> getPage(Page<SkuInfo> pageParam) {Qu…

【双一流高校主办,Springer-LNICST出版,EI稳定检索】2024年应用计算智能、信息学与大数据国际会议(ACIIBD 2024,7月26-28)

2024年应用计算智能、信息学与大数据国际学术会议&#xff08;ACIIBD 2024&#xff09;将于2024年7月26-28日在中国广州举办。会议将聚焦于计算智能及其应用、信息、大数据等相关的研究领域&#xff0c; 广泛邀请国内外知名专家学者&#xff0c;共同探讨相关学科领域的最新发展…

Ubuntu + SSH密钥连接服务器

1. 下载VS code cd到下载文件夹后&#xff0c;使用命令安装&#xff0c;把xxx复制为文件名 sudo dpkg -i xxx.deb2. 为VSCode换皮肤 3. 下载SSH插件和Docker插件 4. 配置SSH 把密钥key文件放在/home/your_user_name/.ssh/里面&#xff0c;然后在/home/your_user_name/.ssh/c…

第1集《修习止观坐禅法要》

《修习止观坐禅法要》诸位法师&#xff0c;诸位学员&#xff0c;阿弥院佛&#xff01; 我们今天能够暂时放下世间的尘劳&#xff0c;大家在一起研究佛法的课程&#xff0c;这件事情在我们的生命当中是非常的稀有难得。 基本上&#xff0c;我们佛法的修习目的是追求身心的安乐…

基于vue的3D高德地图的引入

在引入高德地图的时候需要先注册一个账号 登录下面的网站 账号认证 | 高德控制台 (amap.com) 打开首页应用管理&#xff0c;我的应用 创建新的应用 根据自己的需求进行选择 创建完成之后&#xff0c;点击添加key 不同的服务平台对应不同的可使用服务&#xff0c;选择自己适…

3.js - 模板渲染 - 金属切面效果

md&#xff0c;狗不学&#xff0c;我学 源码 // ts-nocheck// 引入three.js import * as THREE from three// 导入轨道控制器 import { OrbitControls } from three/examples/jsm/controls/OrbitControls// 导入lil.gui import { GUI } from three/examples/jsm/libs/lil-gui.m…

机器学习与深度学习:区别(含工作站硬件推荐)

一、机器学习与深度学习区别 机器学习&#xff08;ML&#xff1a;Machine Learning&#xff09;与深度学习&#xff08;DL&#xff1a;Deep Learning&#xff09;是人工智能&#xff08;AI&#xff09;领域内两个重要但不同的技术。它们在定义、数据依赖性以及硬件依赖性等方面…

如何在忘记密码的情况下解锁Android手机?

您的 Android 设备密码有助于保护您的数据并防止您的个人信息被滥用。但是&#xff0c;如果您被锁定在Android设备之外怎么办&#xff1f;我们知道忘记您的 Android 手机密码是多么令人沮丧&#xff0c;因为它会导致您的设备和数据无法访问。在本技术指南中&#xff0c;我们将向…

[图解]企业应用架构模式2024新译本讲解23-标识映射2

1 00:00:00,950 --> 00:00:02,890 好&#xff0c;我们往下走 2 00:00:04,140 --> 00:00:04,650 一样的 3 00:00:04,660 --> 00:00:07,170 这前面也见过了&#xff0c;定义一个对象数组 4 00:00:07,870 --> 00:00:12,820 数组的长度就是字段的数量&#xff0c;4个…