YOLO V7项目使用

YOLO V7项目使用

根据官方论文中提供的项目地址:使用git clone将项目下载到本地。

https://github.com/WongKinYiu/yolov7

在这里插入图片描述

git clone https://github.com/WongKinYiu/yolov7

使用pycharm打开项目,根据官方提供的requirement.txt文件下载项目启动所需要的环境(在yolo v7的虚拟环境下)

在这里插入图片描述

官方的md文件中给出了需要在终端中切换的目录,和安装的命令如下所示:

cd yolov7
pip install -r requirements.txt # install

存在的问题

  1. 问题一:charset_normalizer版本不匹配问题导致循环导入模块

同样在使用yolo v7项目启动时也会和v5项目一样发生类似的报错信息。我们可以发现同样是charset_normalizer这个组件发生了问题,采用和v5相同的方法更新版本信息再一次进行尝试

Traceback (most recent call last):
AttributeError: partially initialized module ‘charset_normalizer’ has no attribute ‘md__mypyc’ (most likely due to a circular import)

pip install --force-reinstall charset-normalizer==3.1.0
  1. 问题二:启动时验证不通过问题

我第一次下载的项目使用的是github上下载的压缩包文件,经过解压之后导入的pycharm,在启动验证的时候缺少git相关的文件导致启动失败。(git init初始化启动也是不可以)建议还是git clone 网址或者ssh地址

  1. 问题三:项目启动时默认还是采用的cpu版本的torch和之前yolo v5产生的错误类型相同

采用同样解决方式使用conda安装GPU(CUDA)版本的torch,之后我们在执行训练模型的文件将整个YOLO v7项目启动失败(先卸载之前pip安装的cpu版本)

后面直接使用pip命令来安装GPU版本的torch命令如下

pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

在这里插入图片描述

这是我们默认使用的就是GPU的环境。

  1. 执行训练文件时产生报错信息。(个人感觉是最大的一个问题,网上很多的资料说yolov7存在一些小的BUG建议train.py中使用绝对路径

第二个问题是数据集默认是无法下载的需要自己解压到data路径下面,我数据集就打算使用v5中使用过的coco128数据集,并参考v5的配置文件

Exception: train: Error loading data from ./coco/train2017.txt: train: coco\train2017.txt does not exist
See https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data

注意训练集中不能含有cache文件否则也会进行报错_pickle.UnpicklingError: unpickling stack underflow

执行时会新建一个cache

train: New cache created: D:\Git-res\DeepLearing\DL_01\YOLOV7\yolov7\data\datasets\coco128\labels\train2017.cache

修改步骤加入自己的数据集和配置文件(配置文件格式一定参考官方的来进行

在这里插入图片描述

# COCO 2017 dataset http://cocodataset.org

# download command/URL (optional)
download: bash ./scripts/get_coco.sh

# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: D:\\Git-res\\DeepLearing\\DL_01\\YOLOV7\\yolov7\\data\\datasets\\coco128\\images\\train2017  # 118287 images
val: D:\\Git-res\\DeepLearing\\DL_01\\YOLOV7\\yolov7\\data\\datasets\\coco128\\images\\train2017   # 5000 images
test: D:\\Git-res\\DeepLearing\\DL_01\\YOLOV7\\yolov7\\data\\datasets\\coco128\\images\\train2017   # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794

# number of classes
nc: 80

# class names
names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
         'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
         'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
         'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
         'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
         'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
         'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
         'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
         'hair drier', 'toothbrush' ]

parser.add_argument(‘–batch-size’, type=int, default=8, help=‘total batch size for all GPUs’)

训练批次不要设置的过大否则算力不足很难跑的动

在这里插入图片描述

项目功能补充

  1. 使用网络摄像头进行实时的目标检测

更改配置项的参数设置default=‘0’ (从路径改为使用本机的第一个摄像头)

parser.add_argument('--source', type=str, default='0', help='source')
  • 注意点:提前开启摄像头权限。

在执行完成关闭程序以后会生成一个.mp4的文件

  1. YOLO v7中的拓展功能测试(关键点检测)提前手动下载所需要的yolov7-w6-pose.pt文件

    在这里插入图片描述

  2. 执行训练过程完成整个项目的使用

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/775558.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ERROR | Web server failed to start. Port 8080 was already in use.

错误提示: *************************** APPLICATION FAILED TO START ***************************Description:Web server failed to start. Port 8080 was already in use.Action:Identify and stop the process thats listening on port 8080 or configure thi…

ubuntu下后台启动程序

1.启动 nohup python detect_mq.py > output.out 2>&1 & 这个命令是用来在后台运行一个 Python 脚本 detect_mq.py,并将脚本的输出重定向到文件 output.out。下面是这个命令的详细解释: nohup:这是一个命令,它告诉…

【东奥会计-注册安全分析报告】

前言 由于网站注册入口容易被黑客攻击,存在如下安全问题: 暴力破解密码,造成用户信息泄露短信盗刷的安全问题,影响业务及导致用户投诉带来经济损失,尤其是后付费客户,风险巨大,造成亏损无底洞…

有哪些有效的策略可以提升独立站的外链数量?

有哪些有效的策略可以提升独立站的外链数量?提升独立站的外链数量并不难,难得是不被谷歌惩罚把你的网站判定为作弊,正因如此,了解并应用GNB自然外链策略是个不错的开始,GNB外链的核心价值在于它提高了网站外链资源的自…

2024亚太赛(中文)数学建模B题Python代码+结果表数据教学

B题题目:洪水灾害的数据分析与预测 完整论文也写完了 第二问代码(1、3、4问、还有论文见文末) import pandas as pd from sklearn.cluster import KMeans import matplotlib.pyplot as plt import seaborn as sns from matplotlib import rc…

2024年软件测试岗必问的100+个面试题【含答案】

一、基础理论 1、开场介绍 介绍要领:个人基本信息、工作经历、之前所做过的工作及个人专长或者技能优势。扬长避短,一定要口语化,语速适中。沟通好的就多说几句,沟通不好的话就尽量少说两句。举例如下: 面试官你好&…

.net core 的 winform 的 浏览器控件 WebView2

在.NET Core WinForms应用程序中,没有直接的“浏览器控件”,因为WinForms不支持像WebBrowser控件那样的功能。但是,你可以使用WebView2控件,它是一个基于Chromium的浏览器内核,可以在WinForms应用程序中嵌入Web内容。 …

Science Robotics 麻省理工学院最新研究,从仿真中学习的精确选择、定位和抓放物体的视触觉方法

现有的机器人系统在通用性和精确性两个性能目标上难以同时兼顾,往往会陷入一个机器人解决单个任务的情况,缺乏"精确泛化"。本文针对精准和通用的同时兼顾提出了解决方法。提出了SimPLE(Pick Localize和placE的仿真模拟)作为精确拾取和放置的解…

昇思25天学习打卡营第9天|MindSpore使用静态图加速(基于context的开启方式)

在Graph模式下,Python代码并不是由Python解释器去执行,而是将代码编译成静态计算图,然后执行静态计算图。 在静态图模式下,MindSpore通过源码转换的方式,将Python的源码转换成中间表达IR(Intermediate Repr…

电气-伺服(6)脉冲控制

一、脉冲模式原理: 运动控制器输出脉冲信号给伺服驱动器 伺服驱动器工作于位置模式 伺服驱动器内部要完成三闭环(位置闭环 、速度闭环、电流环) 脉冲和伺服控制环:脉冲的个数作用于位置环。脉冲的频率作用于速度环 二、脉冲的两…

ATFX汇市:美国大非农数据来袭,美指与欧元或迎剧烈波动

ATFX汇市:今日20:30,美国劳工部将公布6月非农就业报告,其中新增非农就业人口数据最受关注,前值为27.2万人,预期值19万人,预期降幅高达8.2万人。如果公布值确实如预期一般,美联储降息预期将增强&…

mysql 字符集(character set)和排序规则(collation)

文章目录 概念1、字符集1.1、举例1.2、常见字符集 utf8 和 utf8mb4 区别1.3、字符集 使用 2、排序规则2.1、举例2.2、常见的排序规则 utf8mb4_bin 、utf8mb4_general_ci、utf8mb4_unicode_ci2.3、使用 概念 在 MySQL 中,字符集(character set&#xff0…

昇思25天学习打卡营第8天|ResNet50迁移学习

一、迁移学习定义 迁移学习(Transfer Learning):在一个任务上训练得到的模型包含的知识可以部分或全部地转移到另一个任务上。允许模型将从一个任务中学到的知识应用到另一个相关的任务中。适用于数据稀缺的情况,可减少对大量标记…

【代码大全2 选读】看看骨灰级高手消灭 if-else 逻辑的瑞士军刀长啥样

文章目录 1 【写在前面】2 【心法】这把瑞士军刀长啥样3 【示例1】确定某个月份的天数(Days-in-Month Example)4 【示例2】确定保险费率(Insurance Rates Example)5 【示例3】灵活的消息格式(Flexible-Message-Format …

Windows10删除文件有较长延误的修复方法

Windows10删除文件有较长延误的修复方法 问题描述处理方法 问题描述 电脑配置很好,但是执行文件等删除操作时很长时间才有反应,才会弹出是否删除对话框。或者将文件移动到回收站,也是同样如此。 处理方法 第一步:以管理员身份启…

gitLab使用流程

标题1.配置账户 git config --global user.name git config --global user.email mygitlabmali.cn 标题2.生成秘匙 ssh-keygen -t rsa -C “mygitlabmail.cn” 。 //输入命令后一直回车 ,输入命令后一直回车(密码可以不填),至…

国际上备考所有AWS云计算/IT证书的五大优质免费课程网站

最近越来越多的小伙伴来问小李哥,小李哥亚马逊云科技AWS认证大满贯是在哪里上课复习的呢?全部上付费课程那不是一笔巨款吗?小李哥这次来盘点备考国际上IT证书的5大优质免费课程网站(不只是亚马逊云科技AWS的课程,其他课程同样可以…

Jemeter--独立变参接口压测

Jemeter–独立不变参接口压测 Jemeter–独立变参接口压测 Jemeter–关联接口压测 从数据库获取变参数据源 1、压测计划处添加对应数据库驱动包 左键点击压测计划,进入压测计划页面,点击浏览添加数据库链接jar包 2、线程组添加 JDBC配置原件 填写数据…

技术驱动:探索SpringBoot的大文件上传策略

1.分片上传技术 为了处理大文件上传并保证性能,前后端可以使用分片上传(也称为分块上传)技术。 1.选择原因 分片上传(也称为分块上传)是一种处理大文件上传的技术,主要目的是提高上传的可靠性和效率。 网…

用requirements.txt配置环境

1. 在anaconda创建环境 创建Python版本为3.8的环境,与yolov5所需的包适配。 2. 在Anaconda Prompt中激活环境 (base) C:\Users\吴伊晴>conda activate yolov5 3. 配置环境 用指定路径中的requirements.txt配置环境。 (yolov5) C:\Users\吴伊晴>pip insta…