昇思25天学习打卡营第9天|MindSpore使用静态图加速(基于context的开启方式)

在Graph模式下,Python代码并不是由Python解释器去执行,而是将代码编译成静态计算图,然后执行静态计算图。

在静态图模式下,MindSpore通过源码转换的方式,将Python的源码转换成中间表达IR(Intermediate Representation),并在此基础上对IR图进行优化,最终在硬件设备上执行优化后的图。MindSpore使用基于图表示的函数式IR,称为MindIR,详情可参考中间表示MindIR。

MindSpore的静态图执行过程实际包含两步,对应静态图的Define和Run阶段,但在实际使用中,在实例化的Cell对象被调用时用户并不会分别感知到这两阶段,MindSpore将两阶段均封装在Cell的__call__方法中,因此实际调用过程为:

model(inputs) = model.compile(inputs) + model.construct(inputs),其中model为实例化Cell对象。

使用Graph模式有两种方式:一是调用@jit装饰器修饰函数或者类的成员方法,所修饰的函数或方法将会被编译成静态计算图。jit使用规则详见jit API文档。二是设置ms.set_context(mode=ms.GRAPH_MODE),使用Cell类并且在construct函数中编写执行代码,此时construct函数的代码将会被编译成静态计算图。Cell定义详见Cell API文档。

由于语法解析的限制,当前在编译构图时,支持的数据类型、语法以及相关操作并没有完全与Python语法保持一致,部分使用受限。借鉴传统JIT编译的思路,从图模式的角度考虑动静图的统一,扩展图模式的语法能力,使得静态图提供接近动态图的语法使用体验,从而实现动静统一。为了便于用户选择是否扩展静态图语法,提供了JIT语法支持级别选项jit_syntax_level,其值必须在[STRICT,LAX]范围内,选择STRICT则认为使用基础语法,不扩展静态图语法。默认值为LAX,更多请参考本文的扩展语法(LAX级别)章节。全部级别都支持所有后端。

  • STRICT: 仅支持基础语法,且执行性能最佳。可用于MindIR导入导出。

  • LAX: 支持更多复杂语法,最大程度地兼容Python所有语法。由于存在可能无法导出的语法,不能用于MindIR导入导出。

本文主要介绍,在编译静态图时,支持的数据类型、语法以及相关操作,这些规则仅适用于Graph模式。


使用静态图加速

背景介绍
AI编译框架分为两种运行模式,分别是动态图模式以及静态图模式。MindSpore默认情况下是以动态图模式运行,但也支持手工切换为静态图模式。两种运行模式的详细介绍如下:

动态图模式

动态图的特点是计算图的构建和计算同时发生(Define by run),其符合Python的解释执行方式,在计算图中定义一个Tensor时,其值就已经被计算且确定,因此在调试模型时较为方便,能够实时得到中间结果的值,但由于所有节点都需要被保存,导致难以对整个计算图进行优化。

在MindSpore中,动态图模式又被称为PyNative模式。由于动态图的解释执行特性,在脚本开发和网络流程调试过程中,推荐使用动态图模式进行调试。 如需要手动控制框架采用PyNative模式,可以通过以下代码进行网络构建:

%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
import numpy as np
import mindspore as ms
from mindspore import nn, Tensor
ms.set_context(mode=ms.PYNATIVE_MODE)  # 使用set_context进行动态图模式的配置

class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )
​
    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits
​
model = Network()
input = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32))
output = model(input)
print(output)

[[-0.00134926 -0.13563682 -0.02863023 -0.05452826 0.03290743 -0.12423715
-0.0582641 -0.10854103 -0.08558805 0.06099342]
[-0.00134926 -0.13563682 -0.02863023 -0.05452826 0.03290743 -0.12423715
-0.0582641 -0.10854103 -0.08558805 0.06099342]
[-0.00134926 -0.13563682 -0.02863023 -0.05452826 0.03290743 -0.12423715
-0.0582641 -0.10854103 -0.08558805 0.06099342]
[-0.00134926 -0.13563682 -0.02863023 -0.05452826 0.03290743 -0.12423715
-0.0582641 -0.10854103 -0.08558805 0.06099342]
[-0.00134926 -0.13563682 -0.02863023 -0.05452826 0.03290743 -0.12423715
-0.0582641 -0.10854103 -0.08558805 0.06099342]

[-0.00134926 -0.13563682 -0.02863023 -0.05452826 0.03290743 -0.12423715
-0.0582641 -0.10854103 -0.08558805 0.06099342]
[-0.00134926 -0.13563682 -0.02863023 -0.05452826 0.03290743 -0.12423715
-0.0582641 -0.10854103 -0.08558805 0.06099342]
[-0.00134926 -0.13563682 -0.02863023 -0.05452826 0.03290743 -0.12423715
-0.0582641 -0.10854103 -0.08558805 0.06099342]
[-0.00134926 -0.13563682 -0.02863023 -0.05452826 0.03290743 -0.12423715
-0.0582641 -0.10854103 -0.08558805 0.06099342]]

在这里插入图片描述

静态图模式

相较于动态图而言,静态图的特点是将计算图的构建和实际计算分开(Define and run)。有关静态图模式的运行原理,可以参考静态图语法支持。

在MindSpore中,静态图模式又被称为Graph模式,在Graph模式下,基于图优化、计算图整图下沉等技术,编译器可以针对图进行全局的优化,获得较好的性能,因此比较适合网络固定且需要高性能的场景。

如需要手动控制框架采用静态图模式,可以通过以下代码进行网络构建:

import numpy as np
import mindspore as ms
from mindspore import nn, Tensor
ms.set_context(mode=ms.GRAPH_MODE)  # 使用set_context进行运行静态图模式的配置
​
class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )
​
    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits
​
model = Network()
input = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32))
output = model(input)
print(output)

[[ 0.05363735 0.05117104 -0.03343301 0.06347139 0.07546629 0.03263091
0.02790363 0.06269836 0.01838502 0.04387159]
[ 0.05363735 0.05117104 -0.03343301 0.06347139 0.07546629 0.03263091
0.02790363 0.06269836 0.01838502 0.04387159]
[ 0.05363735 0.05117104 -0.03343301 0.06347139 0.07546629 0.03263091
0.02790363 0.06269836 0.01838502 0.04387159]
[ 0.05363735 0.05117104 -0.03343301 0.06347139 0.07546629 0.03263091
0.02790363 0.06269836 0.01838502 0.04387159]

[ 0.05363735 0.05117104 -0.03343301 0.06347139 0.07546629 0.03263091
0.02790363 0.06269836 0.01838502 0.04387159]
[ 0.05363735 0.05117104 -0.03343301 0.06347139 0.07546629 0.03263091
0.02790363 0.06269836 0.01838502 0.04387159]
[ 0.05363735 0.05117104 -0.03343301 0.06347139 0.07546629 0.03263091
0.02790363 0.06269836 0.01838502 0.04387159]
[ 0.05363735 0.05117104 -0.03343301 0.06347139 0.07546629 0.03263091
0.02790363 0.06269836 0.01838502 0.04387159]]

在这里插入图片描述

静态图模式的使用场景

MindSpore编译器重点面向Tensor数据的计算以及其微分处理。因此使用MindSpore API以及基于Tensor对象的操作更适合使用静态图编译优化。其他操作虽然可以部分入图编译,但实际优化作用有限。另外,静态图模式先编译后执行的模式导致其存在编译耗时。因此,如果函数无需反复执行,那么使用静态图加速也可能没有价值。

有关使用静态图来进行网络编译的示例,请参考网络构建。

静态图模式开启方式

通常情况下,由于动态图的灵活性,我们会选择使用PyNative模式来进行自由的神经网络构建,以实现模型的创新和优化。但是当需要进行性能加速时,我们需要对神经网络部分或整体进行加速。MindSpore提供了两种切换为图模式的方式,分别是基于装饰器的开启方式以及基于全局context的开启方式。

基于装饰器的开启方式

MindSpore提供了jit装饰器,可以通过修饰Python函数或者Python类的成员函数使其被编译成计算图,通过图优化等技术提高运行速度。此时我们可以简单的对想要进行性能优化的模块进行图编译加速,而模型其他部分,仍旧使用解释执行方式,不丢失动态图的灵活性。无论全局context是设置成静态图模式还是动态图模式,被jit修饰的部分始终会以静态图模式进行运行。

在需要对Tensor的某些运算进行编译加速时,可以在其定义的函数上使用jit修饰器,在调用该函数时,该模块自动被编译为静态图。需要注意的是,jit装饰器只能用来修饰函数,无法对类进行修饰。jit的使用示例如下:

import numpy as np
import mindspore as ms
from mindspore import nn, Tensor
​
class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )
​
    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits
​
input = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32))
​
@ms.jit  # 使用ms.jit装饰器,使被装饰的函数以静态图模式运行
def run(x):
    model = Network()
    return model(x)
​
output = run(input)
print(output)

[[-0.12126954 0.06986676 -0.2230821 -0.07087803 -0.01003947 0.01063392
0.10143848 -0.0200909 -0.09724037 0.0114444 ]
[-0.12126954 0.06986676 -0.2230821 -0.07087803 -0.01003947 0.01063392
0.10143848 -0.0200909 -0.09724037 0.0114444 ]
[-0.12126954 0.06986676 -0.2230821 -0.07087803 -0.01003947 0.01063392
0.10143848 -0.0200909 -0.09724037 0.0114444 ]
[-0.12126954 0.06986676 -0.2230821 -0.07087803 -0.01003947 0.01063392
0.10143848 -0.0200909 -0.09724037 0.0114444 ]

[-0.12126954 0.06986676 -0.2230821 -0.07087803 -0.01003947 0.01063392
0.10143848 -0.0200909 -0.09724037 0.0114444 ]
[-0.12126954 0.06986676 -0.2230821 -0.07087803 -0.01003947 0.01063392
0.10143848 -0.0200909 -0.09724037 0.0114444 ]
[-0.12126954 0.06986676 -0.2230821 -0.07087803 -0.01003947 0.01063392
0.10143848 -0.0200909 -0.09724037 0.0114444 ]
[-0.12126954 0.06986676 -0.2230821 -0.07087803 -0.01003947 0.01063392
0.10143848 -0.0200909 -0.09724037 0.0114444 ]]

在这里插入图片描述

除使用修饰器外,也可使用函数变换方式调用jit方法,示例如下:

import numpy as np
import mindspore as ms
from mindspore import nn, Tensor
​
class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )
​
    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits
​
input = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32))
​
def run(x):
    model = Network()
    return model(x)
​
run_with_jit = ms.jit(run)  # 通过调用jit将函数转换为以静态图方式执行
output = run(input)
print(output)

[[ 0.11027216 -0.09628229 0.0457969 0.05396656 -0.06958974 0.0428197
-0.1572069 -0.14151613 -0.04531277 0.07521383]
[ 0.11027216 -0.09628229 0.0457969 0.05396656 -0.06958974 0.0428197
-0.1572069 -0.14151613 -0.04531277 0.07521383]
[ 0.11027216 -0.09628229 0.0457969 0.05396656 -0.06958974 0.0428197
-0.1572069 -0.14151613 -0.04531277 0.07521383]
[ 0.11027216 -0.09628229 0.0457969 0.05396656 -0.06958974 0.0428197
-0.1572069 -0.14151613 -0.04531277 0.07521383]

[ 0.11027216 -0.09628229 0.0457969 0.05396656 -0.06958974 0.0428197
-0.1572069 -0.14151613 -0.04531277 0.07521383]
[ 0.11027216 -0.09628229 0.0457969 0.05396656 -0.06958974 0.0428197
-0.1572069 -0.14151613 -0.04531277 0.07521383]
[ 0.11027216 -0.09628229 0.0457969 0.05396656 -0.06958974 0.0428197
-0.1572069 -0.14151613 -0.04531277 0.07521383]
[ 0.11027216 -0.09628229 0.0457969 0.05396656 -0.06958974 0.0428197
-0.1572069 -0.14151613 -0.04531277 0.07521383]]

在这里插入图片描述

当我们需要对神经网络的某部分进行加速时,可以直接在construct方法上使用jit修饰器,在调用实例化对象时,该模块自动被编译为静态图。示例如下:

import numpy as np
import mindspore as ms
from mindspore import nn, Tensor
​
class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )
​
    @ms.jit  # 使用ms.jit装饰器,使被装饰的函数以静态图模式运行
    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits
​
input = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32))
model = Network()
output = model(input)
print(output)

[[ 0.10522258 0.06597593 -0.09440921 -0.04883489 0.07194916 0.1343117
-0.06813788 0.01986085 0.0216996 -0.05345828]
[ 0.10522258 0.06597593 -0.09440921 -0.04883489 0.07194916 0.1343117
-0.06813788 0.01986085 0.0216996 -0.05345828]
[ 0.10522258 0.06597593 -0.09440921 -0.04883489 0.07194916 0.1343117
-0.06813788 0.01986085 0.0216996 -0.05345828]
[ 0.10522258 0.06597593 -0.09440921 -0.04883489 0.07194916 0.1343117
-0.06813788 0.01986085 0.0216996 -0.05345828]

[ 0.10522258 0.06597593 -0.09440921 -0.04883489 0.07194916 0.1343117
-0.06813788 0.01986085 0.0216996 -0.05345828]
[ 0.10522258 0.06597593 -0.09440921 -0.04883489 0.07194916 0.1343117
-0.06813788 0.01986085 0.0216996 -0.05345828]
[ 0.10522258 0.06597593 -0.09440921 -0.04883489 0.07194916 0.1343117
-0.06813788 0.01986085 0.0216996 -0.05345828]
[ 0.10522258 0.06597593 -0.09440921 -0.04883489 0.07194916 0.1343117
-0.06813788 0.01986085 0.0216996 -0.05345828]]

在这里插入图片描述

基于context的开启方式

context模式是一种全局的设置模式。代码示例如下:

import numpy as np
import mindspore as ms
from mindspore import nn, Tensor
ms.set_context(mode=ms.GRAPH_MODE)  # 使用set_context进行运行静态图模式的配置
​
class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )
​
    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits
​
model = Network()
input = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32))
output = model(input)
print(output)

[[ 0.08501796 -0.04404321 -0.05165704 0.00357929 0.00051521 0.00946456
0.02748473 -0.19415936 -0.00278988 0.04024826]
[ 0.08501796 -0.04404321 -0.05165704 0.00357929 0.00051521 0.00946456
0.02748473 -0.19415936 -0.00278988 0.04024826]
[ 0.08501796 -0.04404321 -0.05165704 0.00357929 0.00051521 0.00946456
0.02748473 -0.19415936 -0.00278988 0.04024826]
[ 0.08501796 -0.04404321 -0.05165704 0.00357929 0.00051521 0.00946456
0.02748473 -0.19415936 -0.00278988 0.04024826]

[ 0.08501796 -0.04404321 -0.05165704 0.00357929 0.00051521 0.00946456
0.02748473 -0.19415936 -0.00278988 0.04024826]
[ 0.08501796 -0.04404321 -0.05165704 0.00357929 0.00051521 0.00946456
0.02748473 -0.19415936 -0.00278988 0.04024826]
[ 0.08501796 -0.04404321 -0.05165704 0.00357929 0.00051521 0.00946456
0.02748473 -0.19415936 -0.00278988 0.04024826]
[ 0.08501796 -0.04404321 -0.05165704 0.00357929 0.00051521 0.00946456
0.02748473 -0.19415936 -0.00278988 0.04024826]]

在这里插入图片描述

静态图的语法约束

在Graph模式下,Python代码并不是由Python解释器去执行,而是将代码编译成静态计算图,然后执行静态计算图。因此,编译器无法支持全量的Python语法。MindSpore的静态图编译器维护了Python常用语法子集,以支持神经网络的构建及训练。详情可参考静态图语法支持。

JitConfig配置选项

在图模式下,可以通过使用JitConfig配置选项来一定程度的自定义编译流程,目前JitConfig支持的配置参数如下:

  • jit_level: 用于控制优化等级。
  • exec_mode: 用于控制模型执行方式。
  • jit_syntax_level: 设置静态图语法支持级别,详细介绍请见静态图语法支持。

静态图高级编程技巧

使用静态图高级编程技巧可以有效地提高编译效率以及执行效率,并可以使程序运行的更加稳定。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/775540.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

电气-伺服(6)脉冲控制

一、脉冲模式原理: 运动控制器输出脉冲信号给伺服驱动器 伺服驱动器工作于位置模式 伺服驱动器内部要完成三闭环(位置闭环 、速度闭环、电流环) 脉冲和伺服控制环:脉冲的个数作用于位置环。脉冲的频率作用于速度环 二、脉冲的两…

ATFX汇市:美国大非农数据来袭,美指与欧元或迎剧烈波动

ATFX汇市:今日20:30,美国劳工部将公布6月非农就业报告,其中新增非农就业人口数据最受关注,前值为27.2万人,预期值19万人,预期降幅高达8.2万人。如果公布值确实如预期一般,美联储降息预期将增强&…

mysql 字符集(character set)和排序规则(collation)

文章目录 概念1、字符集1.1、举例1.2、常见字符集 utf8 和 utf8mb4 区别1.3、字符集 使用 2、排序规则2.1、举例2.2、常见的排序规则 utf8mb4_bin 、utf8mb4_general_ci、utf8mb4_unicode_ci2.3、使用 概念 在 MySQL 中,字符集(character set&#xff0…

昇思25天学习打卡营第8天|ResNet50迁移学习

一、迁移学习定义 迁移学习(Transfer Learning):在一个任务上训练得到的模型包含的知识可以部分或全部地转移到另一个任务上。允许模型将从一个任务中学到的知识应用到另一个相关的任务中。适用于数据稀缺的情况,可减少对大量标记…

【代码大全2 选读】看看骨灰级高手消灭 if-else 逻辑的瑞士军刀长啥样

文章目录 1 【写在前面】2 【心法】这把瑞士军刀长啥样3 【示例1】确定某个月份的天数(Days-in-Month Example)4 【示例2】确定保险费率(Insurance Rates Example)5 【示例3】灵活的消息格式(Flexible-Message-Format …

Windows10删除文件有较长延误的修复方法

Windows10删除文件有较长延误的修复方法 问题描述处理方法 问题描述 电脑配置很好,但是执行文件等删除操作时很长时间才有反应,才会弹出是否删除对话框。或者将文件移动到回收站,也是同样如此。 处理方法 第一步:以管理员身份启…

gitLab使用流程

标题1.配置账户 git config --global user.name git config --global user.email mygitlabmali.cn 标题2.生成秘匙 ssh-keygen -t rsa -C “mygitlabmail.cn” 。 //输入命令后一直回车 ,输入命令后一直回车(密码可以不填),至…

国际上备考所有AWS云计算/IT证书的五大优质免费课程网站

最近越来越多的小伙伴来问小李哥,小李哥亚马逊云科技AWS认证大满贯是在哪里上课复习的呢?全部上付费课程那不是一笔巨款吗?小李哥这次来盘点备考国际上IT证书的5大优质免费课程网站(不只是亚马逊云科技AWS的课程,其他课程同样可以…

Jemeter--独立变参接口压测

Jemeter–独立不变参接口压测 Jemeter–独立变参接口压测 Jemeter–关联接口压测 从数据库获取变参数据源 1、压测计划处添加对应数据库驱动包 左键点击压测计划,进入压测计划页面,点击浏览添加数据库链接jar包 2、线程组添加 JDBC配置原件 填写数据…

技术驱动:探索SpringBoot的大文件上传策略

1.分片上传技术 为了处理大文件上传并保证性能,前后端可以使用分片上传(也称为分块上传)技术。 1.选择原因 分片上传(也称为分块上传)是一种处理大文件上传的技术,主要目的是提高上传的可靠性和效率。 网…

用requirements.txt配置环境

1. 在anaconda创建环境 创建Python版本为3.8的环境,与yolov5所需的包适配。 2. 在Anaconda Prompt中激活环境 (base) C:\Users\吴伊晴>conda activate yolov5 3. 配置环境 用指定路径中的requirements.txt配置环境。 (yolov5) C:\Users\吴伊晴>pip insta…

LeetCode热题100刷题4:76. 最小覆盖子串、239. 滑动窗口最大值、53. 最大子数组和、56. 合并区间

76. 最小覆盖子串 滑动窗口解决字串问题。 labuladong的算法小抄中关于滑动窗口的算法总结&#xff1a; class Solution { public:string minWindow(string s, string t) {unordered_map<char,int> need,window;for(char c : t) {need[c];}int left 0, right 0;int …

【手机取证】如何使用360加固助手给apk加固

文章关键词&#xff1a;手机取证、电子数据取证、数据恢复 一、前言 APP加固是对APP代码逻辑的一种保护。原理是将应用文件进行某种形式的转换&#xff0c;包括不限于隐藏&#xff0c;混淆&#xff0c;加密等操作&#xff0c;进一步保护软件的利益不受损坏&#xff0c;下面给…

Java并发编程知识整理笔记

目录 ​1. 什么是线程和进程&#xff1f; 线程与进程有什么区别&#xff1f; 那什么是上下文切换&#xff1f; 进程间怎么通信&#xff1f; 什么是用户线程和守护线程&#xff1f; 2. 并行和并发的区别&#xff1f; 3. 创建线程的几种方式&#xff1f; Runnable接口和C…

pycharm如何使用jupyter

目录 配置jupyter新建jupyter文件别人写的方法&#xff08;在pycharm种安装&#xff0c;在网页中使用&#xff09; pycharm专业版 配置jupyter 在pycharm终端启动一个conda虚拟环境&#xff0c;输入 conda install jupyter会有很多前置包需要安装&#xff1a; 新建jupyter…

中国IDC圈探访北京•光子1号金融算力中心

今天&#xff0c;“AI”、“大模型”是最炙手可热的话题&#xff0c;全球有海量人群在工作生活中使用大模型&#xff0c;大模型产品涉及多模态&#xff0c;应用范围已涵盖电商、传媒、金融、短视频、制造等众多行业。 而回看2003年的互联网记忆&#xff0c; “上网”“在线”是…

空状态页面设计的艺术与科学

空状态界面是用户在网站、APP中遇到的因无数据展示而中断体验的界面&#xff0c;这个界面设计对于解决用户疑惑有着很大的帮助。那么我们应该如何设计空状态界面呢&#xff1f;空状态是指在界面设计中&#xff0c;没有内容或数据时所显示的状态。它可能出现在各种情况下&#x…

可视化大屏的强势在于预警和感知的科学依据可靠性强

**可视化大屏的强势&#xff1a;预警与感知的科学依据可靠性探究** 数据可视化已成为信息传递的重要手段。其中&#xff0c;可视化大屏作为一种直观、高效的展示方式&#xff0c;广泛应用于各个领域&#xff0c;如智慧城市、智慧交通、智慧医疗等。可视化大屏的强势不仅体现在…

【最详细】PhotoScan(MetaShape)全流程教程

愿天下心诚士子&#xff0c;人人会PhotoScan&#xff01; 愿天下惊艳后辈&#xff0c;人人可剑开天门&#xff01; 本教程由CSDN用户CV_X.Wang撰写&#xff0c;所用数据均来自山东科技大学视觉测量研究团队&#xff0c;特此鸣谢&#xff01;盗版必究&#xff01; 一、引子 Ph…

振弦式多点位移计是什么?有什么作用?

在复杂的工程结构监测中&#xff0c;位移、沉降、应变等参数的精确测量对于确保工程安全和质量至关重要。振弦式多点位移计作为一种高精度、高可靠性的测量工具&#xff0c;广泛应用于桥梁、隧道、大坝、高层建筑等各类工程结构的健康监测中。南京峟思将给大家详细介绍振弦式多…