代码随想录算法训练营第74天:路径总结[1]

代码随想录算法训练营第74天:路径总结

A * 算法精讲 (A star算法)

卡码网:126. 骑士的攻击(opens new window)

题目描述

在象棋中,马和象的移动规则分别是“马走日”和“象走田”。现给定骑士的起始坐标和目标坐标,要求根据骑士的移动规则,计算从起点到达目标点所需的最短步数。

棋盘大小 1000 x 1000(棋盘的 x 和 y 坐标均在 [1, 1000] 区间内,包含边界)

输入描述

第一行包含一个整数 n,表示测试用例的数量。

接下来的 n 行,每行包含四个整数 a1, a2, b1, b2,分别表示骑士的起始位置 (a1, a2) 和目标位置 (b1, b2)。

输出描述

输出共 n 行,每行输出一个整数,表示骑士从起点到目标点的最短路径长度。

输入示例

6
5 2 5 4
1 1 2 2
1 1 8 8
1 1 8 7
2 1 3 3
4 6 4 6

输出示例

2
4
6
5
1
0

#思路

我们看到这道题目的第一个想法就是广搜,这也是最经典的广搜类型题目。

这里我直接给出广搜的C++代码:

#include<iostream>
#include<queue>
#include<string.h>
using namespace std;
int moves[1001][1001];
int dir[8][2]={-2,-1,-2,1,-1,2,1,2,2,1,2,-1,1,-2,-1,-2};
void bfs(int a1,int a2, int b1, int b2)
{
	queue<int> q;
	q.push(a1);
	q.push(a2);
	while(!q.empty())
	{
		int m=q.front(); q.pop();
		int n=q.front(); q.pop();
		if(m == b1 && n == b2)
		break;
		for(int i=0;i<8;i++)
		{
			int mm=m + dir[i][0];
			int nn=n + dir[i][1];
			if(mm < 1 || mm > 1000 || nn < 1 || nn > 1000)
			continue;
			if(!moves[mm][nn])
			{
				moves[mm][nn]=moves[m][n]+1;
				q.push(mm);
				q.push(nn);
			}
		}
	}
}

int main()
{
int n, a1, a2, b1, b2;
cin >> n;
while (n--) {
cin >> a1 >> a2 >> b1 >> b2;
memset(moves,0,sizeof(moves));
		bfs(a1, a2, b1, b2);
		cout << moves[b1][b2] << endl;
	}
	return 0;
}

提交后,大家会发现,超时了。

因为本题地图足够大,且 n 也有可能很大,导致有非常多的查询。

我们来看一下广搜的搜索过程,如图,红色是起点,绿色是终点,黄色是要遍历的点,最后从 起点 找到 达到终点的最短路径是棕色。

可以看出 广搜中,做了很多无用的遍历, 黄色的格子是广搜遍历到的点。

这里我们能不能让便利方向,向这终点的方向去遍历呢?

这样我们就可以避免很多无用遍历。

#Astar

Astar 是一种 广搜的改良版。 有的是 Astar是 dijkstra 的改良版。

其实只是场景不同而已 我们在搜索最短路的时候, 如果是无权图(边的权值都是1) 那就用广搜,代码简洁,时间效率和 dijkstra 差不多 (具体要取决于图的稠密)

如果是有权图(边有不同的权值),优先考虑 dijkstra。

而 Astar 关键在于 启发式函数, 也就是 影响 广搜或者 dijkstra 从 容器(队列)里取元素的优先顺序。

以下,我用BFS版本的A * 来进行讲解。

在BFS中,我们想搜索,从起点到终点的最短路径,要一层一层去遍历。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

如果 使用A * 的话,其搜索过程是这样的,如图,图中着色的都是我们要遍历的点。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

(上面两图中 最短路长度都是8,只是走的方式不同而已)

大家可以发现 **BFS 是没有目的性的 一圈一圈去搜索, 而 A *** 是有方向性的去搜索

看出 A * 可以节省很多没有必要的遍历步骤。

为了让大家可以明显看到区别,我将 BFS 和 A * 制作成可视化动图,大家可以自己看看动图,效果更好。

地址:https://kamacoder.com/tools/knight.html

那么 A * 为什么可以有方向性的去搜索,它的如何知道方向呢?

其关键在于 启发式函数

那么启发式函数落实到代码处,如果指引搜索的方向?

在本篇开篇中给出了BFS代码,指引 搜索的方向的关键代码在这里:

int m=q.front();q.pop();
int n=q.front();q.pop();

从队列里取出什么元素,接下来就是从哪里开始搜索。

所以 启发式函数 要影响的就是队列里元素的排序

这是影响BFS搜索方向的关键。

对队列里节点进行排序,就需要给每一个节点权值,如何计算权值呢?

每个节点的权值为F,给出公式为:F = G + H

G:起点达到目前遍历节点的距离

F:目前遍历的节点到达终点的距离

起点达到目前遍历节点的距离 + 目前遍历的节点到达终点的距离 就是起点到达终点的距离。

本题的图是无权网格状,在计算两点距离通常有如下三种计算方式:

  1. 曼哈顿距离,计算方式: d = abs(x1-x2)+abs(y1-y2)
  2. 欧氏距离(欧拉距离) ,计算方式:d = sqrt( (x1-x2)^2 + (y1-y2)^2 )
  3. 切比雪夫距离,计算方式:d = max(abs(x1 - x2), abs(y1 - y2))

x1, x2 为起点坐标,y1, y2 为终点坐标 ,abs 为求绝对值,sqrt 为求开根号,

选择哪一种距离计算方式 也会导致 A * 算法的结果不同。

本题,采用欧拉距离才能最大程度体现 点与点之间的距离。

所以 使用欧拉距离计算 和 广搜搜出来的最短路的节点数是一样的。 (路径可能不同,但路径上的节点数是相同的)

我在制作动画演示的过程中,分别给出了曼哈顿、欧拉以及契比雪夫 三种计算方式下,A * 算法的寻路过程,大家可以自己看看看其区别。

动画地址:https://kamacoder.com/tools/knight.html

计算出来 F 之后,按照 F 的 大小,来选去出队列的节点。

可以使用 优先级队列 帮我们排好序,每次出队列,就是F最小的节点。

实现代码如下:(启发式函数 采用 欧拉距离计算方式)

#include<iostream>
#include<queue>
#include<string.h>
using namespace std;
int moves[1001][1001];
int dir[8][2]={-2,-1,-2,1,-1,2,1,2,2,1,2,-1,1,-2,-1,-2};
int b1, b2;
// F = G + H
// G = 从起点到该节点路径消耗
// H = 该节点到终点的预估消耗

struct Knight{
int x,y;
int g,h,f;
bool operator < (const Knight & k) const{  // 重载运算符, 从小到大排序
return k.f < f;
}
};

priority_queue<Knight> que;

int Heuristic(const Knight& k) { // 欧拉距离
return (k.x - b1) * (k.x - b1) + (k.y - b2) * (k.y - b2); // 统一不开根号,这样可以提高精度
}
void astar(const Knight& k)
{
Knight cur, next;
	que.push(k);
	while(!que.empty())
	{
		cur=que.top(); que.pop();
		if(cur.x == b1 && cur.y == b2)
		break;
		for(int i = 0; i < 8; i++)
		{
			next.x = cur.x + dir[i][0];
			next.y = cur.y + dir[i][1];
			if(next.x < 1 || next.x > 1000 || next.y < 1 || next.y > 1000)
			continue;
			if(!moves[next.x][next.y])
			{
				moves[next.x][next.y] = moves[cur.x][cur.y] + 1;

// 开始计算F
				next.g = cur.g + 5; // 统一不开根号,这样可以提高精度,马走日,1 * 1 + 2 * 2 = 5
next.h = Heuristic(next);
next.f = next.g + next.h;
que.push(next);
			}
		}
	}
}

int main()
{
int n, a1, a2;
cin >> n;
while (n--) {
cin >> a1 >> a2 >> b1 >> b2;
memset(moves,0,sizeof(moves));
Knight start;
start.x = a1;
start.y = a2;
start.g = 0;
start.h = Heuristic(start);
start.f = start.g + start.h;
		astar(start);
while(!que.empty()) que.pop(); // 队列清空
		cout << moves[b1][b2] << endl;
	}
	return 0;
}

#复杂度分析

A * 算法的时间复杂度 其实是不好去量化的,因为他取决于 启发式函数怎么写。

最坏情况下,A * 退化成广搜,算法的时间复杂度 是 O(n * 2),n 为节点数量。

最佳情况,是从起点直接到终点,时间复杂度为 O(dlogd),d 为起点到终点的深度。

因为在搜索的过程中也需要堆排序,所以是 O(dlogd)。

实际上 A * 的时间复杂度是介于 最优 和最坏 情况之间, 可以 非常粗略的认为 A * 算法的时间复杂度是 O(nlogn) ,n 为节点数量。

A * 算法的空间复杂度 O(b ^ d) ,d 为起点到终点的深度,b 是 图中节点间的连接数量,本题因为是无权网格图,所以 节点间连接数量为 4。

#拓展

如果本题大家使用 曼哈顿距离 或者 切比雪夫距离 计算的话,可以提交试一试,有的最短路结果是并不是最短的。

原因也是 曼哈顿 和 切比雪夫这两种计算方式在 本题的网格地图中,都没有体现出点到点的真正距离!

可能有些录友找到类似的题目,例如 poj 2243 ​**(opens new window)** ,使用 曼哈顿距离 提交也过了, 那是因为题目中的地图太小了,仅仅是一张 8 * 8的地图,根本看不出来 不同启发式函数写法的区别。

A * 算法 并不是一个明确的最短路算法,**A *** 算法搜的路径如何,完全取决于 启发式函数怎么写

**A *** 算法并不能保证一定是最短路,因为在设计 启发式函数的时候,要考虑 时间效率与准确度之间的一个权衡。

虽然本题中,A * 算法得到是最短路,也是因为本题 启发式函数 和 地图结构都是最简单的。

例如在游戏中,在地图很大、不同路径权值不同、有障碍 且多个游戏单位在地图中寻路的情况,如果要计算准确最短路,耗时很大,会给玩家一种卡顿的感觉。

而真实玩家在玩游戏的时候,并不要求一定是最短路,次短路也是可以的 (玩家不一定能感受出来,及时感受出来也不是很在意),只要奔着目标走过去 大体就可以接受。

所以 在游戏开发设计中,**保证运行效率的情况下,A *** 算法中的启发式函数 设计往往不是最短路,而是接近最短路的 次短路设计

大家如果玩 LOL,或者 王者荣耀 可以回忆一下:如果 从很远的地方点击 让英雄直接跑过去 是 跑的路径是不靠谱的,所以玩家们才会在 距离英雄尽可能近的位置去点击 让英雄跑过去。

#A * 的缺点

大家看上述 A * 代码的时候,可以看到 我们想 队列里添加了很多节点,但真正从队列里取出来的 仅仅是 靠启发式函数判断 距离终点最近的节点。

相对了 普通BFS,A * 算法只从 队列里取出 距离终点最近的节点。

那么问题来了,A * 在一次路径搜索中,大量不需要访问的节点都在队列里,会造成空间的过度消耗。

IDA * 算法 对这一空间增长问题进行了优化,关于 IDA * 算法,本篇不再做讲解,感兴趣的录友可以自行找资料学习。

另外还有一种场景 是 A * 解决不了的。

如果题目中,给出 多个可能的目标,然后在这多个目标中 选择最近的目标,这种 A * 就不擅长了, A * 只擅长给出明确的目标 然后找到最短路径。

如果是多个目标找最近目标(特别是潜在目标数量很多的时候),可以考虑 Dijkstra ,BFS 或者 Floyd。

最短路算法总结篇

至此已经讲解了四大最短路算法,分别是Dijkstra、Bellman_ford、SPFA 和 Floyd。

针对这四大最短路算法,我用了七篇长文才彻底讲清楚,分别是:

  • dijkstra朴素版
  • dijkstra堆优化版
  • Bellman_ford
  • Bellman_ford 队列优化算法(又名SPFA)
  • bellman_ford 算法判断负权回路
  • bellman_ford之单源有限最短路
  • Floyd 算法精讲
  • 启发式搜索:A * 算法

最短路算法比较复杂,而且各自有各自的应用场景,我来用一张表把讲过的最短路算法的使用场景都展现出来:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

(因为A * 属于启发式搜索,和上面最短路算法并不是一类,不适合一起对比,所以没有放在一起)

可能有同学感觉:这个表太复杂了,我记也记不住。

其实记不住的原因还是对 这几个最短路算法没有深刻的理解。

这里我给大家一个大体使用场景的分析:

如果遇到单源且边为正数,直接Dijkstra

至于 使用朴素版还是 堆优化版 还是取决于图的稠密度, 多少节点多少边算是稠密图,多少算是稀疏图,这个没有量化,如果想量化只能写出两个版本然后做实验去测试,不同的判题机得出的结果还不太一样。

一般情况下,可以直接用堆优化版本。

如果遇到单源边可为负数,直接 Bellman-Ford,同样 SPFA 还是 Bellman-Ford 取决于图的稠密度。

一般情况下,直接用 SPFA。

如果有负权回路,优先 Bellman-Ford, 如果是有限节点最短路 也优先 Bellman-Ford,理由是写代码比较方便。

如果是遇到多源点求最短路,直接 Floyd

除非 源点特别少,且边都是正数,那可以 多次 Dijkstra 求出最短路径,但这种情况很少,一般出现多个源点了,就是想让你用 Floyd 了。

对于A * ,由于其高效性,所以在实际工程应用中使用最为广泛 ,由于其 结果的不唯一性,也就是可能是次短路的特性,一般不适合作为算法题。

游戏开发、地图导航、数据包路由等都广泛使用 A * 算法。

图论总结篇

从深搜广搜 到并查集,从最小生成树到拓扑排序, 最后是最短路算法系列。

至此算上本篇,一共30篇文章,图论之旅就在此收官了。

在0098.所有可达路径 ,我们接触了两种图的存储方式,邻接表和邻接矩阵,掌握两种图的存储方式很重要。

图的存储方式也是大家习惯在核心代码模式下刷题 经常忽略的 知识点。因为在力扣上刷题不需要掌握图的存储方式。

#深搜与广搜

在二叉树章节中,其实我们讲过了 深搜和广搜在二叉树上的搜索过程。

在图论章节中,深搜与广搜就是在图这个数据结构上的搜索过程。

深搜与广搜是图论里基本的搜索方法,大家需要掌握三点:

  • 搜索方式:深搜是可一个方向搜,不到黄河不回头。 广搜是围绕这起点一圈一圈的去搜。
  • 代码模板:需要熟练掌握深搜和广搜的基本写法。
  • 应用场景:图论题目基本上可以即用深搜也可用广搜,无疑是用哪个方便而已

#注意事项

需要注意的是,同样是深搜模板题,会有两种写法。

在0099.岛屿的数量深搜.md 和 0105.有向图的完全可达性,涉及到dfs的两种写法。

我们对dfs函数的定义是 是处理当前节点 还是处理下一个节点 很重要,决定了两种dfs的写法。

这也是为什么很多录友看到不同的dfs写法,结果发现提交都能过的原因。

而深搜还有细节,有的深搜题目需要用到回溯的过程,有的就不用回溯的过程,

一般是需要计算路径的问题 需要回溯,如果只是染色问题(岛屿问题系列) 就不需要回溯。

例如: 0105.有向图的完全可达性 深搜就不需要回溯,而 0098.所有可达路径 中的递归就需要回溯,文章中都有详细讲解

注意:以上说的是不需要回溯,不是没有回溯,只要有递归就会有回溯,只是我们是否需要用到回溯这个过程,这是需要考虑的。

很多录友写出来的广搜可能超时了, 例如题目:0099.岛屿的数量广搜

根本原因是只要 加入队列就代表 走过,就需要标记,而不是从队列拿出来的时候再去标记走过

具体原因,我在0099.岛屿的数量广搜 中详细讲了。

在深搜与广搜的讲解中,为了防止惯性思维,我特别加入了题目 0106.岛屿的周长,提醒大家,看到类似的题目,也不要上来就想着深搜和广搜。

还有一些图的问题,在题目描述中,是没有图的,需要我们自己构建一个图,例如 0110.字符串接龙,题目中连线都没有,需要我们自己去思考 什么样的两个字符串可以连成线。

#并查集

并查集相对来说是比较复杂的数据结构,其实他的代码不长,但想彻底学透并查集,需要从多个维度入手,

我在理论基础篇的时候 讲解如下重点:

  • 为什么要用并查集,怎么不用个二维数据,或者set、map之类的。
  • 并查集能解决那些问题,哪些场景会用到并查集
  • 并查集原理以及代码实现
  • 并查集写法的常见误区
  • 带大家去模拟一遍并查集的过程
  • 路径压缩的过程
  • 时间复杂度分析

上面这几个维度 大家都去思考了,并查集基本就学明白了。

其实理论基础篇就算是给大家出了一道裸的并查集题目了,所以在后面的题目安排中,会稍稍的拔高一些,重点在于并查集的应用上。

例如 并查集可以判断这个图是否是树,因为树的话,只有一个根,符合并查集判断集合的逻辑,题目:0108.冗余连接。

在0109.冗余连接II 中 对有向树的判断难度更大一些,需要考虑的情况比较多。

#最小生成树

最小生成树是所有节点的最小连通子图, 即:以最小的成本(边的权值)将图中所有节点链接到一起。

最小生成树算法,有prim 和 kruskal。

prim 算法是维护节点的集合,而 Kruskal 是维护边的集合

在 稀疏图中,用Kruskal更优。 在稠密图中,用prim算法更优。

边数量较少为稀疏图,接近或等于完全图(所有节点皆相连)为稠密图

Prim 算法 时间复杂度为 O(n^2),其中 n 为节点数量,它的运行效率和图中边树无关,适用稠密图。

Kruskal算法 时间复杂度 为 O(nlogn),其中n 为边的数量,适用稀疏图。

关于 prim算法,我自创了三部曲,来帮助大家理解:

  1. 第一步,选距离生成树最近节点
  2. 第二步,最近节点加入生成树
  3. 第三步,更新非生成树节点到生成树的距离(即更新minDist数组)

大家只要理解这三部曲, prim算法 至少是可以写出一个框架出来,然后在慢慢补充细节,这样不至于 自己在写prim的时候 两眼一抹黑 完全凭感觉去写。

minDist数组 是prim算法的灵魂,它帮助 prim算法完成最重要的一步,就是如何找到 距离最小生成树最近的点

kruscal的主要思路:

  • 边的权值排序,因为要优先选最小的边加入到生成树里

  • 遍历排序后的边

    • 如果边首尾的两个节点在同一个集合,说明如果连上这条边图中会出现环
    • 如果边首尾的两个节点不在同一个集合,加入到最小生成树,并把两个节点加入同一个集合

而判断节点是否在一个集合 以及将两个节点放入同一个集合,正是并查集的擅长所在。

所以 Kruskal 是需要用到并查集的。

这也是我在代码随想录图论编排上 为什么要先 讲解 并查集 在讲解 最小生成树。

#拓扑排序

拓扑排序 是在图上的一种排序。

概括来说,给出一个 有向图,把这个有向图转成线性的排序 就叫拓扑排序

同样,拓扑排序也可以检测这个有向图 是否有环,即存在循环依赖的情况。

拓扑排序的一些应用场景,例如:大学排课,文件下载依赖 等等。

只要记住如下两步拓扑排序的过程,代码就容易写了:

  1. 找到入度为0 的节点,加入结果集
  2. 将该节点从图中移除

#最短路算法

最短路算法是图论中,比较复杂的算法,而且不同的最短路算法都有不同的应用场景。

我在 最短路算法总结篇 里已经做了一个高度的概括。

大家要时常温故而知新,才能透彻理解各个最短路算法。

#总结

到最后,图论终于剧终了,相信这是市面上大家能看到最全最细致的图论讲解教程。

图论也是我 《代码随想录》所有章节里 所费精力最大的一个章节。

只为了不负录友们的期待。 大家加油💪🏻

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/773749.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

细说MCU的ADC模块单通道连续采样的实现方法

目录 一、工程依赖的硬件及背景 二、设计目的 三、建立工程 1、配置GPIO 2、选择时钟源和Debug 3、配置ADC 4、配置系统时钟和ADC时钟 5、配置TIM3 6、配置串口 四、代码修改 1、重定义TIM3中断回调函数 2、启动ADC及重写其回调函数 3、定义用于存储转换结果的数…

【深度学习练习】心脏病预测

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 一、什么是RNN RNN与传统神经网络最大的区别在于&#xff0c;每次都会将前一次的输出结果&#xff0c;带到下一隐藏层中一起训练。如下图所示&#xff1a; …

macOS版ChatGPT更新:修复AI对话纯文本存储问题

猫头虎 &#x1f42f; 建联猫头虎&#xff0c;商务合作&#xff0c;产品评测&#xff0c;产品推广&#xff0c;个人自媒体创作&#xff0c;超级个体&#xff0c;涨粉秘籍&#xff0c;一起探索编程世界的无限可能&#xff01; macOS版ChatGPT更新&#xff1a;修复AI对话纯文本…

C++ 空间和时间高效的二项式系数(Space and time efficient Binomial Coefficient)

这里函数采用两个参数n和k&#xff0c;并返回二项式系数 C(n, k) 的值。 例子&#xff1a; 输入&#xff1a; n 4 和 k 2 输出&#xff1a; 6 解释&#xff1a; 4 C 2 等于 4!/(2!*2!) 6 输入&#xff1a; n 5 和 k 2 输出&#xff1a; 10 解释&#xff1a; 5 C …

maven项目、idea抽风问题解决

开发的时候遇到奇奇怪怪的非技术问题&#xff0c;解决起来会费时间&#xff0c;做无用功。   这里记录常见的情况和解决方法 1.未识别maven项目 文件的图标变成了这种橙色的&#xff0c;而且有主启动函数也不能run 右键pom文件&#xff0c;点击Add as Maven Project 如果…

揭开梵蒂冈秘密档案馆的神秘面纱

关注我们 - 数字罗塞塔计划 - PART 01 深邃的历史 梵蒂冈秘密档案馆起源于公元8世纪&#xff0c;负责保存官方文书和教皇书信。9世纪开始在圣彼得大教堂设立档案库&#xff0c;负责保管外交和法律文件&#xff0c;在帕拉蒂诺山塔内保存经济和行政方面的档案。11至13世纪&…

SpringBoot AOP面向切面编程 基础

介绍 在 Spring Boot 中&#xff0c;AOP&#xff08;面向切面编程&#xff09;是一种强大的技术&#xff0c;它允许你在应用程序中横切关注点&#xff0c;比如日志记录、事务管理、性能监控等&#xff0c;从而避免重复代码和混乱 可以记录操作日志 权限控制 。 依赖 <dep…

HTMLCSS(入门)

HTML <html> <head><title>第一个页面</title></head><body>键盘敲烂&#xff0c;工资过万</body> </html> <!DOCTYPE>文档类型声明&#xff0c;告诉浏览器使用哪种HTML版本显示网页 <!DOCTYPE html>当前页面采取…

go语言day08 泛型 自定义错误处理 go关键字:协程

泛型&#xff1a; 抛错误异常 实现error接口类型 用java语言解释的话&#xff0c;实现类需要重写error类型的抽象方法Error().这样就可以自定义异常处理。 回到go语言&#xff0c;在Error()方法中用*argError 这样一个指针类来充当error接口的实现类。 在f2()方法中定义返回值…

本地部署秘塔开源搜索引擎

秘塔AI搜索是由秘塔科技于2024年初推出的一款新型搜索引擎&#xff0c;被业界誉为“中国版的Perplexity”。秘塔科技成立于2018年4月&#xff0c;其核心团队包括CEO闵可锐、技术专家唐悦和首席运营官王益为等。秘塔AI搜索以其高效简洁的特点受到关注&#xff0c;其搜索结果直接…

累积分布函数的一些性质证明

性质1&#xff1a; E [ X ] ∫ 0 ∞ ( 1 − F ( x ) ) d x − ∫ − ∞ 0 F ( x ) d x ( 1 ) E[X]\int_0^{\infty}(1-F(x))dx - \int_{-\infty}^0F(x)dx\quad (1) E[X]∫0∞​(1−F(x))dx−∫−∞0​F(x)dx(1) 证明&#xff1a; E [ X ] ∫ − ∞ ∞ x p ( x ) d x E[X] …

ETCD 基本介绍与常见命令的使用

转载请标明出处&#xff1a;https://blog.csdn.net/donkor_/article/details/140171610 文章目录 一、基本介绍1.1 参考1.2 什么是ETCD1.3 ETCD的特点1.4 ETCD的主要功能1.5 ETCD的整体架构1.6 什么时候用ETCD&#xff0c;什么时候用redis 二、安装三、使用3.1 etcdctl3.2 常用…

审核平台前端新老仓库迁移

背景 审核平台接入50业务&#xff0c;提供在线审核及离线质检、新人培训等核心能力&#xff0c;同时提供数据报表、资源追踪、知识库等工具。随着平台的飞速发展&#xff0c;越来越多的新业务正在或即将接入审核平台&#xff0c;日均页面浏览量为百万级别。如今审核平台已是公司…

[Redis]哨兵机制

哨兵机制概念 在传统主从复制机制中&#xff0c;会存在一些问题&#xff1a; 1. 主节点发生故障时&#xff0c;进行主备切换的过程是复杂的&#xff0c;需要人工参与&#xff0c;导致故障恢复时间无法保障。 2. 主节点可以将读压力分散出去&#xff0c;但写压力/存储压力是无法…

直击园区消防管理现状,智慧消防相比传统消防管理的优势是什么

一、工业园区消防管理现状 1、消防信息智能化程度低 信息化手段落后&#xff0c;现场的数据信息无法即时传送至指挥中心&#xff0c;突发事件发生时&#xff0c;无法扁平化指挥到基层现场&#xff0c;应急处置能力不足。 2、防控体系不健全 存在监测盲点&#xff0c;火灾报警…

Mybatis实现RBAC权限模型查询

RBAC权限模型 Role-Based Access Control&#xff0c;中文意思是&#xff1a;基于角色&#xff08;Role&#xff09;的访问控制。这是一种广泛应用于计算机系统和网络安全领域的访问控制模型。 简单来说&#xff0c;就是通过将权限分配给➡角色&#xff0c;再将角色分配给➡用…

ABB机器人坐标系偏移指令

ABB机器人在坐标系中偏移用到的指令有&#xff1a;Offs和RelTool。Offs用在工件坐标系中偏移&#xff0c;而RelTool是在工具坐标系中偏移。 一、Offs用于在一个机械臂位置的工件坐标系中添加一个偏移量。 Offs (Point &#xff0c;XOffset&#xff0c; YOffset &#xff0c;Z…

【UE5.1】Chaos物理系统基础——05 蓝图绑定Chaos破裂或碰撞事件

步骤 1. 新建一个父类为Actor的蓝图&#xff0c;这里命名为“BP_ChaosExplosionEvent” 打开“BP_ChaosExplosionEvent”&#xff0c;添加一个变量&#xff0c;这里命名为“GC”&#xff0c;变量类型为“几何体集actor”&#xff0c;设置为可编辑实例 在事件图表中添加如下节点…

Unity休闲手机游戏开发课程

课程介绍 Unity休闲手机游戏开发课程将教您如何利用Unity游戏引擎创建令人愉快的休闲手机游戏。从基础的游戏开发知识到高级的游戏制作技巧&#xff0c;您将学习到创建各种类型的休闲游戏所需的关键技能和工具。无论您是初学者还是有一定经验的开发者&#xff0c;本课程都能帮助…

基于JavaScript、puppeteer的爬虫

前期准备: npm puppeteer import puppeteer from puppeteer; puppeteer文档 第一步&#xff1a;启动浏览器&#xff0c;跳转到需要爬取的页面 const browser await puppeteer.launch({ headless: false });const page await browser.newPage();await page.goto(url, { w…