TensorFlow安装CPU版本和GPU版本

文章目录

  • 前言
  • 一、TensorFlow安装CPU版本
    • 1.新建虚拟环境
    • 2.激活虚拟环境
    • 3.下载tensorflow
    • 4.验证是否下载成功
  • 二、TensorFlow安装GPU版本
    • 1.新建虚拟环境
    • 2.激活虚拟环境
    • 3.安装tensorflow-gpu
    • 4.验证是否下载成功


前言

下载的Anaconda是Anaconda3-2024.02-1-Windows-x86_64版本


一、TensorFlow安装CPU版本

本例子,下载的Python版本为3.11.7和tensorflow版本为2.16.1

1.新建虚拟环境

打开Anaconda Prompt,输入

conda create -n myenvname python=3.11.7

“myenvname”为自己的虚拟环境名字
在这里插入图片描述

2.激活虚拟环境

继续输入

activate myenvname

“myenvname”为自己的虚拟环境名字
在这里插入图片描述

3.下载tensorflow

直接安装tensorflow会遇到以下报错,这是提示有一些依赖没有安装
在这里插入图片描述
所以我先安装了依赖再下载tensorflow

pip install joblib==1.2.0 scipy==1.11.4 tabulate==0.9.0 tqdm==4.65.0 tensorflow==2.16.1 -i https://mirrors.aliyun.com/pypi/simple

在这里插入图片描述

4.验证是否下载成功

输入ipython,进入交互环境(要是报错,那可能是没有ipython,可以pip list查看一下,没有的话需要下载一个)
导入tensorflow

import tensorflow as tf

在这里插入图片描述
成功

二、TensorFlow安装GPU版本

本例子,下载的CUDA版本是11.5.2,cuDNN的版本是8.3.2,Python环境是3.9,tensorflow-gpu的版本是2.7.0。注:CUDA、cuDNN、python的环境要对应,不然会安装失败(很重要!!!)
CUDA和cuDNN具体安装教程看这篇GPU配置环境,这个教程很详细的介绍了GPU的配置。

1.新建虚拟环境

打开Anaconda Prompt,输入

conda create -n myenvname python=3.9

“myenvname”为自己的虚拟环境名字
在这里插入图片描述

2.激活虚拟环境

activate myenvname

“myenvname”为自己的虚拟环境名字
在这里插入图片描述

3.安装tensorflow-gpu

pip install tensorflow-gpu==2.7.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

在这里插入图片描述

4.验证是否下载成功

进入python环境,导入tensorflow

 import tensorflow as tf

要是遇到这个问题,提示protobuf版本过低

(tensorflow2) C:\Users\asus>python
Python 3.9.19 (main, May  6 2024, 20:12:36) [MSC v.1916 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\__init__.py", line 41, in <module>
    from tensorflow.python.tools import module_util as _module_util
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\python\__init__.py", line 41, in <module>
    from tensorflow.python.eager import context
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\python\eager\context.py", line 33, in <module>
    from tensorflow.core.framework import function_pb2
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\core\framework\function_pb2.py", line 16, in <module>
    from tensorflow.core.framework import attr_value_pb2 as tensorflow_dot_core_dot_framework_dot_attr__value__pb2
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\core\framework\attr_value_pb2.py", line 16, in <module>
    from tensorflow.core.framework import tensor_pb2 as tensorflow_dot_core_dot_framework_dot_tensor__pb2
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\core\framework\tensor_pb2.py", line 16, in <module>
    from tensorflow.core.framework import resource_handle_pb2 as tensorflow_dot_core_dot_framework_dot_resource__handle__pb2
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\core\framework\resource_handle_pb2.py", line 16, in <module>
    from tensorflow.core.framework import tensor_shape_pb2 as tensorflow_dot_core_dot_framework_dot_tensor__shape__pb2
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\core\framework\tensor_shape_pb2.py", line 36, in <module>
    _descriptor.FieldDescriptor(
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\google\protobuf\descriptor.py", line 553, in __new__
    _message.Message._CheckCalledFromGeneratedFile()
TypeError: Descriptors cannot be created directly.
If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0.
If you cannot immediately regenerate your protos, some other possible workarounds are:
 1. Downgrade the protobuf package to 3.20.x or lower.
 2. Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python parsing and will be much slower).

More information: https://developers.google.com/protocol-buffers/docs/news/2022-05-06#python-updates
>>>

输入exit()退出python环境,回到虚拟环境

pip install protobuf==3.19.6 -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn

在这里插入图片描述
再次进入python环境,输入“import tensorflow as tf”,要是遇到如下问题,提示TensorFlow与NumPy的版本不兼容

(tensorflow2) C:\Users\asus>python
Python 3.9.19 (main, May  6 2024, 20:12:36) [MSC v.1916 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf

A module that was compiled using NumPy 1.x cannot be run in
NumPy 2.0.0 as it may crash. To support both 1.x and 2.x
versions of NumPy, modules must be compiled with NumPy 2.0.
Some module may need to rebuild instead e.g. with 'pybind11>=2.12'.

If you are a user of the module, the easiest solution will be to
downgrade to 'numpy<2' or try to upgrade the affected module.
We expect that some modules will need time to support NumPy 2.

Traceback (most recent call last):  File "<stdin>", line 1, in <module>
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\__init__.py", line 41, in <module>
    from tensorflow.python.tools import module_util as _module_util
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\python\__init__.py", line 41, in <module>
    from tensorflow.python.eager import context
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\python\eager\context.py", line 38, in <module>
    from tensorflow.python.client import pywrap_tf_session
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\python\client\pywrap_tf_session.py", line 23, in <module>
    from tensorflow.python.client._pywrap_tf_session import *
AttributeError: _ARRAY_API not found

A module that was compiled using NumPy 1.x cannot be run in
NumPy 2.0.0 as it may crash. To support both 1.x and 2.x
versions of NumPy, modules must be compiled with NumPy 2.0.
Some module may need to rebuild instead e.g. with 'pybind11>=2.12'.

If you are a user of the module, the easiest solution will be to
downgrade to 'numpy<2' or try to upgrade the affected module.
We expect that some modules will need time to support NumPy 2.

Traceback (most recent call last):  File "<stdin>", line 1, in <module>
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\__init__.py", line 41, in <module>
    from tensorflow.python.tools import module_util as _module_util
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\python\__init__.py", line 46, in <module>
    from tensorflow.python import data
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\python\data\__init__.py", line 25, in <module>
    from tensorflow.python.data import experimental
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\python\data\experimental\__init__.py", line 98, in <module>
    from tensorflow.python.data.experimental import service
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\python\data\experimental\service\__init__.py", line 374, in <module>
    from tensorflow.python.data.experimental.ops.data_service_ops import distribute
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\python\data\experimental\ops\data_service_ops.py", line 27, in <module>
    from tensorflow.python.data.experimental.ops import compression_ops
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\python\data\experimental\ops\compression_ops.py", line 20, in <module>
    from tensorflow.python.data.util import structure
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\python\data\util\structure.py", line 26, in <module>
    from tensorflow.python.data.util import nest
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\python\data\util\nest.py", line 40, in <module>
    from tensorflow.python.framework import sparse_tensor as _sparse_tensor
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\python\framework\sparse_tensor.py", line 28, in <module>
    from tensorflow.python.framework import constant_op
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\python\framework\constant_op.py", line 29, in <module>
    from tensorflow.python.eager import execute
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\python\eager\execute.py", line 27, in <module>
    from tensorflow.python.framework import dtypes
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\python\framework\dtypes.py", line 30, in <module>
    from tensorflow.python.lib.core import _pywrap_bfloat16
AttributeError: _ARRAY_API not found
ImportError: numpy.core._multiarray_umath failed to import
ImportError: numpy.core.umath failed to import
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\__init__.py", line 41, in <module>
    from tensorflow.python.tools import module_util as _module_util
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\python\__init__.py", line 46, in <module>
    from tensorflow.python import data
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\python\data\__init__.py", line 25, in <module>
    from tensorflow.python.data import experimental
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\python\data\experimental\__init__.py", line 98, in <module>
    from tensorflow.python.data.experimental import service
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\python\data\experimental\service\__init__.py", line 374, in <module>
    from tensorflow.python.data.experimental.ops.data_service_ops import distribute
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\python\data\experimental\ops\data_service_ops.py", line 27, in <module>
    from tensorflow.python.data.experimental.ops import compression_ops
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\python\data\experimental\ops\compression_ops.py", line 20, in <module>
    from tensorflow.python.data.util import structure
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\python\data\util\structure.py", line 26, in <module>
    from tensorflow.python.data.util import nest
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\python\data\util\nest.py", line 40, in <module>
    from tensorflow.python.framework import sparse_tensor as _sparse_tensor
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\python\framework\sparse_tensor.py", line 28, in <module>
    from tensorflow.python.framework import constant_op
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\python\framework\constant_op.py", line 29, in <module>
    from tensorflow.python.eager import execute
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\python\eager\execute.py", line 27, in <module>
    from tensorflow.python.framework import dtypes
  File "C:\Users\asus\.conda\envs\tensorflow2\lib\site-packages\tensorflow\python\framework\dtypes.py", line 33, in <module>
    _np_bfloat16 = _pywrap_bfloat16.TF_bfloat16_type()
TypeError: Unable to convert function return value to a Python type! The signature was
        () -> handle
>>>

输入exit()退出python环境,回到虚拟环境

pip install numpy==1.21.6 -i https://pypi.tuna.tsinghua.edu.cn/simple/

在这里插入图片描述
进入python环境,输入

import tensorflow as tf
tf.__version__
tf.test.is_gpu_available()

在这里插入图片描述
查看版本2.7.0,版本正确。末尾显示True,TensorFlow检测到可用的GPU,安装成功,exit()退出python环境

后续我想用ipython查看是否安装成功,出现以下问题
进入ipython环境,输入

import tensorflow as tf
tf.__version__
tf.test.is_gpu_available()

在这里插入图片描述
创建虚拟环境的时候指定python版本为3.9,但是这里却显示3.11.7。
末尾显示False,TensorFlow没有检测到可用的GPU。
猜测可能是这个虚拟环境没有ipython,可能用了其他环境的ipython。
解决方案,可以在虚拟环境中用pip list查看虚拟环境中是否有ipython,要是没有,需要安装一个,然后就可以解决了

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/772747.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

latex 报错解决①aligned ②begin document

1. 是aligned&#xff0c;不是align&#xff01;&#xff01; 网上写的公式大多是这样的 \begin{equation}\label{eq:2} \begin{align} Q\left( {s,t} \right) a{s^2} 2bst c{t^2} 2ds 2et f \end{align} \end{equation}但是报错&#xff1a; ! Package amsmath Erro…

大语言模型测评工具-ChatHub和ChatAll

背景 现在国内外拥有上百个大语言模型&#xff0c;在AI业务中&#xff0c;我们需要在其中选择一个合适业务模型&#xff0c;就需要对这些模型进行测试。手工去测试这么多模型效率一定不高&#xff0c;今天就介绍两个提高测评模型效率的工具 ChatHub和ChatAll。 介绍 ChatHub…

k8s-第十节-Ingress

Ingress 介绍 Ingress 为外部访问集群提供了一个 统一 入口&#xff0c;避免了对外暴露集群端口&#xff1b;功能类似 Nginx&#xff0c;可以根据域名、路径把请求转发到不同的 Service。可以配置 https 跟 LoadBalancer 有什么区别&#xff1f; LoadBalancer 需要对外暴露…

《侃侃而谈 · 为什么动笔》

&#x1f4e2; 大家好&#xff0c;我是 【战神刘玉栋】&#xff0c;有10多年的研发经验&#xff0c;致力于前后端技术栈的知识沉淀和传播。 &#x1f497; &#x1f33b; CSDN入驻一周&#xff0c;希望大家多多支持&#xff0c;后续会继续提升文章质量&#xff0c;绝不滥竽充数…

Greenplum(一)【MPP 架构 数据类型】

1、Greenplum 入门 Greenplum 是基于 MPP 架构的一款分布式分析型数据库&#xff0c;具备关系型数据库的特点&#xff0c;因为它处理的是结构化的数据&#xff0c;同时具备大数据分布式的特点。 1.1、MPP 架构 MPP&#xff08;Massively Parallel Processing&#xff09;架构是…

同方威视受邀盛装亮相2024长三角快递物流展(杭州)助力行业物畅其流

同方威视技术股份有限公司携安全检测产品和综合解决方案&#xff0c;盛装亮相2024长三角快递物流展&#xff08;杭州&#xff09; 展位号&#xff1a;3C馆A07-1 时间&#xff1a;2024年7月8-10日 地址&#xff1a;杭州国际博览中心&#xff08;浙江省杭州市萧山区奔竞大道35…

实现前端项目自动构建和部署(Gitee Go)

前言 相信所有的前端开发者都希望将自己的代码部署在服务器上让所有人都能访问到&#xff0c;但是却不知道如何进行部署。其实要是实现代码上线非常简单&#xff0c;我们只需要将build之后的代码上传到服务器&#xff0c;然后通过Nginx起一个服务指向我们build后的代码就可以了…

解析MySQL核心技术:视图的实用指南与实践案例

在数据库管理中&#xff0c;MySQL视图&#xff08;View&#xff09;是一种强大的功能&#xff0c;利用它可以简化复杂查询、提高数据安全性以及增强代码的可维护性。本篇文章将详细介绍MySQL视图的相关知识&#xff0c;包括视图的创建、修改、删除、使用场景以及常见的最佳实践…

WAIC热点聚焦|具身智能简介:AI新浪潮的领跑者

WAIC热点聚焦|具身智能简介&#xff1a;AI新浪潮的领跑者 引言 随着"具身智能"&#xff08;Embodied Intelligence&#xff09;的火热讨论&#xff0c;2024年标志着人机交互新时代的开启。在大模型技术的推动下&#xff0c;机器人响应语音指令成为现实&#xff0c;…

如何自动筛选螺丝不良品?

四角螺丝是一种特殊设计的螺丝&#xff0c;其螺纹头部呈四个平行的角状结构&#xff0c;与传统的六角螺丝相比具有独特的外观和功能。这种设计使得四角螺丝在安装和拆卸时更容易使用&#xff0c;并提供了更好的扭矩传递效率。四角螺丝头部呈现四个平行的角&#xff0c;与常见的…

系统级应用锁的实现方法

前言: 应用锁是一种常见的需求&#xff0c; 下面提供一个个人认为还比较完美的解决方法。本篇从两个方面详述应用锁的实现方法。 一. 流程图 二. 实现细节 一.流程图 二. 实现效果及细节

RocketMQ复杂过滤尝试

需求 消息实体&#xff0c;根据实体中的一个字段&#xff0c;决定推给多个业务系统。 例&#xff1a;一个点位信息Bean&#xff0c;这个点位信息&#xff0c;设备、能源、安全都有用&#xff0c;那么点位信息表中有适用模块标识。 点位新增 需要通知所有勾选业务系统 tag -…

摄像机反求跟踪软件/插件 Mocha Pro 2024 v11.0.2 CE Win

AE/PR/OFX/达芬奇/AVX插件 | 摄像机反求跟踪软件Mocha Pro 2024 v11.0.2 CE Win-PR模板网 Mocha Pro 软件(插件)&#xff0c;用于平面运动跟踪、3D跟踪、动态观察、对象移除、图像稳定和PowerMesh有机扭曲跟踪等功能。整合了SynthEyes核心的3D跟踪算法&#xff0c;能够快速自动…

Pluck-CMS-Pluck-4.7.16 远程代码执行漏洞(CVE-2022-26965)

前言 CVE-2022-26965 是一个影响 Pluck CMS 4.7.16 版本的远程代码执行&#xff08;RCE&#xff09;漏洞。该漏洞允许经过身份验证的用户通过 /admin.php?actionthemeinstall 的主题上传功能执行任意代码。 漏洞细节 在 Pluck CMS 的管理界面中&#xff0c;管理员可以上传主…

【数据结构】(C语言):堆(二叉树的应用)

堆&#xff1a; 此处堆为二叉树的应用&#xff0c;不是计算机中用于管理动态内存的堆。形状是完全二叉树。堆分两种&#xff1a;最大堆&#xff0c;最小堆。最大堆&#xff1a;每个节点比子树所有节点的数值都大&#xff0c;根节点为最大值。最小堆&#xff1a;每个节点比子树…

千万不要用国产BI,不然你会发现它性价比奇高——以奥威BI软件为例

在信息技术日新月异的今天&#xff0c;企业对于商业智能&#xff08;BI&#xff09;软件的选择往往陷入了一个误区&#xff1a;盲目追求国际品牌&#xff0c;却忽视了身边那些性价比极高的国产精品。如果你不慎踏入了“千万不要用国产BI”的陷阱&#xff0c;那么奥威BI软件将是…

PHP家政服务预约单开版微信小程序系统源码

&#x1f3e0; —— 便捷生活&#xff0c;从指尖开始&#x1f4aa; &#x1f308;【开篇&#xff1a;家政新风尚&#xff0c;一键触达】 在忙碌的生活节奏中&#xff0c;你是否渴望拥有一个温馨、整洁的家&#xff0c;却又苦于找不到合适的家政服务&#xff1f;现在&#xff…

C++_03

1、构造函数 1.1 什么是构造函数 类的构造函数是类的一种特殊的成员函数&#xff0c;它会在每次创建类的新对象时执行。 每次构造的是构造成员变量的初始化值&#xff0c;内存空间等。 构造函数的名称与类的名称是完全相同的&#xff0c;并且不会返回任何类型&#xff0c;也不…

对标GPT-4o!不锁区、支持手机、免费使用,Moshi来啦!

7月4日凌晨&#xff0c;法国知名开源AI研究实验室Kyutai在官网发布了&#xff0c;具备看、听、说多模态大模型——Moshi。 Moshi功能与OpenAI在5月14日展示的最新模型GPT-4o差不多&#xff0c;可以听取人的语音提问后进行实时推理回答内容。但GPT-4o的语音模式要在秋天才能全面…

适合弱电行业的项目管理软件!找企智汇软件!

随着科技的不断发展&#xff0c;弱电行业对于项目管理的需求日益增强。为满足这一需求&#xff0c;企智汇推出了一款专为弱电行业打造的工程项目管理系统。 企智汇弱电行业工程项目管理系统以其专业性、高效性和智能性&#xff0c;赢得了业界的广泛认可。该系统深入融合了弱电…