计算机视觉目标检测性能指标

目录

精确率(Precision)和召回率(Recall)

F1分数(F1 Score)

IoU(Intersection over Union)

P-R曲线(Precision-Recall Curve)和 AP

mAP(mean Average Precision)


目标检测是计算机视觉领域中的一个重要任务,其目标是在图像或视频中识别出物体的位置和类别。为了评估目标检测算法的性能,需要使用一系列指标来量化模型的准确性、召回率、精确率以及对不同类别的处理能力。本文将详细介绍常见的目标检测性能指标,包括精确率、召回率、F1分数、IoU、AP、mAP、P-R曲线等,同时提供相关公式和案例。

精确率(Precision)和召回率(Recall)

精确率和召回率是评估目标检测模型性能的重要指标,它们通常在二分类任务中使用。在目标检测中,精确率表示模型正确识别出的目标数与所有被模型预测为目标的框的数量之间的比例。召回率表示模型正确识别出的目标数与总目标数之间的比例。

 

公式如下:

准确率(Accuracy):Acc = ( TP + TN ) / ( P +N )

精确率( precision ):TP / ( TP+FP ) = TP / P  

召回率(recall)):TP / (TP + FN ) = TP / T

案例: 假设我们有一个目标检测模型在一组图像上进行测试,其中涉及10个目标物体。模型识别出了8个目标,其中6个是真实目标(真阳性),2个是错误识别的(假阳性),而实际上还有2个目标未被识别(假阴性)。那么,精确率为6 / (6 + 2) = 0.75,召回率为6 / (6 + 2) = 0.75。

F1分数(F1 Score)

F1分数是精确率和召回率的调和平均,用于综合考虑模型的准确率和召回率。F1分数对于处理不平衡数据集或需要权衡精确率和召回率的情况非常有用。

公式如下:

 

案例: 假设一个目标检测模型的精确率为0.8,召回率为0.7。那么,F1分数为2 * (0.8 * 0.7) / (0.8 + 0.7) = 0.7619。

IoU(Intersection over Union)

IoU是衡量预测边界框和真实边界框之间重叠程度的指标,常用于评估目标检测框的质量。IoU通过计算预测框和真实框的交集面积除以它们的并集面积来衡量。

公式如下:

通常,如果IoU大于某个阈值(例如0.5),则将预测框视为正确预测。

案例: 考虑一个目标检测任务,真实框的位置为[20, 30, 100, 150],预测框的位置为[25, 35, 95, 145]。交集面积为(95 - 25) * (145 - 35) = 6000,真实框面积为(100 - 20) * (150 - 30) = 9000,预测框面积为(95 - 25) * (145 - 35) = 6000。并集面积为9000 + 6000 - 6000 = 9000。因此,IoU为6000 / 9000 = 0.6667。

P-R曲线(Precision-Recall Curve)和 AP

PR 曲线是用于衡量模型在不同召回率下的准确性的一种图形化表示方式。在目标检测中,召回率是指正确检测出的正样本数量与所有实际正样本数量的比率,而精确率是指正确检测出的正样本数量与所有被模型预测为正样本的样本数量的比率。

用一个简单的例子来演示平均精度(AP)的计算。假设数据集中总共有5个苹果。我们收集模型为苹果作的所有预测,并根据预测的置信水平(从最高到最低)对其进行排名。第二列表示预测是否正确。如果它与ground truth匹配并且loU≥0.5,则是正确的。

 

表中,Rank一列表示框按置信度由高到低排列后的序号,correct表示该框是否正确,Precision表示计算出的精确率,Recall表示计算出的召回率。

精确率和召回率的计算是一个不断累计的过程,而不是每个框独立的。

例如:

在第一个框时,精确率 = 1/1 =1.0,召回率 =1/5 = 0.2;

在第二个框时,精确率 = 2/2 = 1.0,召回率 = 2/5 = 0.4;

在第三个框时,精确率 = 2/3 = 0.67,召回率 = 2/5 = 0.4;

……
这时,我们根据精确率和召回率,就能绘制出PR曲线:

 

AP是PR曲线下的面积,会设定采样点,一般在横轴0~1范围内平均分为10或者100段,最后采样的值相加除以采样点数。当然还有别的方法。

mAP(mean Average Precision)

mAP是所有类别AP的平均值,通常用于衡量多类别目标检测任务的整体性能。它对模型在各个类别上的性能进行综合评估,能够准确反映模型在不同类别上的表现。

案例: 假设我们有一个多类别目标检测模型,对于每个类别计算得到的AP如下:

类别AP
0.85
0.75
车辆0.90
行人0.70

则mAP为(0.85 + 0.75 + 0.90 + 0.70) / 4 = 0.80。

目标检测性能指标在评估模型在不同数据集和任务上的性能时起着重要作用。精确率、召回率、F1分数、IoU、AP、mAP以及P-R曲线等指标能够综合考虑模型在不同方面的表现,帮助我们更好地理解模型的优势和局限性。在实际应用中,根据任务的特点和需求,选择适合的指标来评估模型的性能是至关重要的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/76808.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Spring Boot单元测试与Mybatis单表增删改查

目录 1. Spring Boot单元测试 1.1 什么是单元测试? 1.2 单元测试有哪些好处? 1.3 Spring Boot 单元测试使用 单元测试的实现步骤 1. 生成单元测试类 2. 添加单元测试代码 简单的断言说明 2. Mybatis 单表增删改查 2.1 单表查询 2.2 参数占位符 ${} 和 #{} ${} 和 …

VGG分类实战:猫狗分类

关于数据集 数据集选择的是Kaggle上的Cat and Dog,猫狗图片数量上达到了上万张。你可以通过这里进入Kaggle下载数据集Cat and Dog | Kaggle。 在我的Github仓库当中也放了猫狗图片各666张。 VGG网络 VGG的主要特点是使用了一系列具有相同尺寸 3x3 大小的卷积核进…

数据结构之动态内存管理机制

目录 数据结构之动态内存管理机制 占用块和空闲块 系统的内存管理 可利用空间表 分配存储空间的方式 空间分配与回收过程产生的问题 边界标识法管理动态内存 分配算法 回收算法 伙伴系统管理动态内存 可利用空间表中结点构成 分配算法 回收算法 总结 无用单元收…

PyTorch翻译官网教程-LANGUAGE MODELING WITH NN.TRANSFORMER AND TORCHTEXT

官网链接 Language Modeling with nn.Transformer and torchtext — PyTorch Tutorials 2.0.1cu117 documentation 使用 NN.TRANSFORMER 和 TORCHTEXT进行语言建模 这是一个关于训练模型使用nn.Transformer来预测序列中的下一个单词的教程。 PyTorch 1.2版本包含了一个基于论…

判断推理

六哥爱学习呀 产品经理 不是说我努力学习我就一定可以通过考试,所以是推不出,类似数学中充分必要性 8 回复 发布于 2019-08-07 16:28 官方解析: 当丙的范围足够大时,可能与甲相交或完全包含甲,在此情况下,有…

Python方式实现射后不管导弹的简易制导系统

1 问题 对QN-506上的S570智能反坦克制导导弹的射后不管产生了浓厚的兴趣,想用Python简易还原一下。 2 方法 之前查阅资料时了解到使用pygame库制作的贪吃蛇,是否有一种方法能让“贪吃蛇”一直跟着鼠标走呢?鼠标模拟行进中的坦克,“…

Linux 常见问题解决思路

Linux 常见问题解决思路 CPU 高系统平均负载高(load average) CPU 高 1,步骤:查找进程-》查找线程-》分析threadDump日志-》找出问题代码 a、查看 cpu 高的 java 进程 topb、生成进程下所有线程的栈日志 jstack 1721 > 1712.…

设计模式之单例设计模式

单例设计模式 2.1 孤独的太阳盘古开天,造日月星辰。2.2 饿汉造日2.3 懒汉的队伍2.4 大道至简 读《秒懂设计模式总结》 单例模式(Singleton)是一种非常简单且容易理解的设计模式。顾名思义,单例即单一的实例,确切地讲就是指在某个系统中只存在…

centos 7.9 部署django项目

1、部署框架 主要组件:nginx、uwsgi、django项目 访问页面流程:nginx---》uwsgi---》django---》uwsgi---》nginx 2、部署过程 操作系统:centos 7.9 配置信息:4核4G 50G 内网 eip :10.241.103.216 部署过程&…

pycharm调整最大堆发挥最大

python程序运行时,怎么提高效率,设置pycharm最大堆过程如下; 一、进入设置pycharm最大堆; 二、进入设置pycharm最大堆; 如果8g设置为6g左右,占75%左右最佳

数学建模之“TOPSIS数学模型”原理和代码详解

一、简介 TOPSIS(Technique for Order Preference by Similarity to Ideal Solution)是一种多准则决策分析方法,用于解决多个候选方案之间的排序和选择问题。它基于一种数学模型,通过比较每个候选方案与理想解和负理想解之间的相…

小程序CSS button按钮自定义高度之后不居中

问题&#xff1a; 按钮设置高度后不居中 <view><button class"btn1" size"">Save</button> </view> page {font-size: 30rpx; }.btn1 {margin-top: 100rpx;height: 190rpx;background: linear-gradient(90deg, #FF8A06, #FF571…

c语言每日一练(8)

前言&#xff1a;每日一练系列&#xff0c;每一期都包含5道选择题&#xff0c;2道编程题&#xff0c;博主会尽可能详细地进行讲解&#xff0c;令初学者也能听的清晰。每日一练系列会持续更新&#xff0c;暑假时三天之内必有一更&#xff0c;到了开学之后&#xff0c;将看学业情…

微信小程序:模板使用

目录 模板的优点&#xff1a; 一、静态模板创建 二、静态模板使用 1.*.wxml引入模板 2.模板使用 3.*.wxss引入模板的样式 三、动态模板创建 四、动态模板使用 1.*.wxml引入模板 2.模板使用 3.*.js定义动态数据 五、结果展示 总结 模板的优点&#xff1a; 有利于保持网…

NVIDIA Omniverse与GPT-4结合生成3D内容

全球各行业对 3D 世界和虚拟环境的需求呈指数级增长。3D 工作流程是工业数字化的核心&#xff0c;开发实时模拟来测试和验证自动驾驶车辆和机器人&#xff0c;操作数字孪生来优化工业制造&#xff0c;并为科学发现铺平新的道路。 如今&#xff0c;3D 设计和世界构建仍然是高度…

HDFS原理剖析

一、概述 HDFS是Hadoop的分布式文件系统&#xff08;Hadoop Distributed File System&#xff09;&#xff0c;实现大规模数据可靠的分布式读写。HDFS针对的使用场景是数据读写具有“一次写&#xff0c;多次读”的特征&#xff0c;而数据“写”操作是顺序写&#xff0c;也就是…

免费开源服务器资源监控系统grafana+prometheus+node_exporter

有项目做测试的时候需要查询服务器资源利用情况&#xff0c;自己又没写相应的模块&#xff0c;此时就需要一套好用的资源监控系统&#xff0c;&#xff0c;咨询了运维人员给推荐了一套&#xff0c;装完后真的很好用。 就是grafanaprometheusnode_exporter&#xff08;linux&am…

DAY3,ARM(LED点灯实验)

1.汇编实现开发板三盏灯点亮熄灭&#xff1b; .text .global _start _start: /**********LED123点灯**************/RCC_INIT:1使能PE10 PF10 PE8RCC..寄存器,E[4]1 F[5]1 0x50000a28ldr r0,0x50000a28ldr r1,[r0]orr r1,r1,#(0x3 << 4)str r1,[r0]LED1_INET:2初始化LED…

Vue3实现图片懒加载及自定义懒加载指令

Vue3实现图片懒加载及自定义懒加载指令 前言1.使用vue3-lazyload插件2.自定义v-lazy懒加载指令2.1 使用VueUse2.2 使用IntersectionObserver 前言 图片懒加载是一种常见性能优化的方式&#xff0c;它只去加载可视区域图片&#xff0c;而不是在网页加载完毕后就立即加载所有图片…

安防监控视频云存储平台EasyNVR通道频繁离线的原因排查与解决

安防视频监控汇聚EasyNVR视频集中存储平台&#xff0c;是基于RTSP/Onvif协议的安防视频平台&#xff0c;可支持将接入的视频流进行全平台、全终端分发&#xff0c;分发的视频流包括RTSP、RTMP、HTTP-FLV、WS-FLV、HLS、WebRTC等格式。为了满足用户的集成与二次开发需求&#xf…