数学建模之“TOPSIS数学模型”原理和代码详解

一、简介

TOPSIS(Technique for Order Preference by Similarity to Ideal Solution)是一种多准则决策分析方法,用于解决多个候选方案之间的排序和选择问题。它基于一种数学模型,通过比较每个候选方案与理想解和负理想解之间的相似性来评估其优劣。

TOPSIS方法包括以下步骤:

  1. 确定决策准则:首先确定影响决策的准则,例如成本、效益、可行性等。这些准则应该能够量化,并与候选方案相关联。

  2. 归一化:对每个准则进行归一化处理,将其转化为标准化的0-1范围内的值。这样可以确保不同准则的权重在计算中得到平等的考虑。

  3. 确定理想解和负理想解:根据每个准则的重要性,确定一个理想解和一个负理想解。理想解是在各个准则上表现最佳的方案,而负理想解则是在各个准则上表现最差的方案。

  4. 计算相似性:使用距离度量方法(如欧几里得距离或曼哈顿距离)计算每个候选方案与理想解和负理想解之间的相似性。

  5. 计算综合评分:根据相似性计算每个候选方案的综合评分。综合评分越接近1,表示该方案越接近理想解;综合评分越接近0,表示该方案越接近负理想解。

  6. 排序和选择:按照综合评分对候选方案进行排序,并选择得分最高的方案作为最优解。

TOPSIS方法的优点包括简单易用、不需要主观权重设定、能够有效处理多准则决策问题。然而,它也有一些限制,例如对准则之间的相互关系没有考虑,不能处理不确定性和不完备信息等。

总之,TOPSIS数学模型是一种常用的多准则决策方法,可以帮助决策者在多个候选方案中做出合理的选择和排序。

二、实例

以下是一个典型的TOPSIS例题:

假设你是一家公司的采购经理,你需要从三个供应商中选择一个最佳的供应商来购买某种原材料。你考虑的准则有:价格、质量和交货时间。根据这些准则,你收集到了每个供应商的数据如下:

供应商A:价格 8, 质量 9, 交货时间 5
供应商B:价格 6, 质量 7, 交货时间 8
供应商C:价格 9, 质量 8, 交货时间 7

现在使用TOPSIS方法来选择最佳供应商。

1. 归一化:
首先,对每个准则进行归一化处理,将它们转化为0-1范围内的标准化值。这里我们可以使用最小-最大归一化方法。

供应商A:价格 8/9 ≈ 0.89, 质量 9/9 = 1, 交货时间 5/9 ≈ 0.56
供应商B:价格 6/9 ≈ 0.67, 质量 7/9 ≈ 0.78, 交货时间 8/9 ≈ 0.89
供应商C:价格 9/9 = 1, 质量 8/9 ≈ 0.89, 交货时间 7/9 ≈ 0.78

2. 确定理想解和负理想解:
根据每个准则的重要性,确定理想解和负理想解。对于价格和交货时间,理想解是最小值,负理想解是最大值;对于质量,理想解是最大值,负理想解是最小值。

理想解:价格 0, 质量 1, 交货时间 0
负理想解:价格 1, 质量 0, 交货时间 1

3. 计算相似性:
使用距离度量方法(如欧几里得距离)计算每个供应商与理想解和负理想解之间的相似性。

供应商A:与理想解的相似性 = √((0.89-0)^2 + (1-0)^2 + (0.56-0)^2) ≈ 1.12
         与负理想解的相似性 = √((0.89-1)^2 + (1-0)^2 + (0.56-1)^2) ≈ 0.84
供应商B:与理想解的相似性 = √((0.67-0)^2 + (0.78-1)^2 + (0.89-0)^2) ≈ 0.73
         与负理想解的相似性 = √((0.67-1)^2 + (0.78-0)^2 + (0.89-1)^2) ≈ 1.24
供应商C:与理想解的相似性 = √((1-0)^2 + (0.89-1)^2 + (0.78-0)^2) ≈ 0.26
         与负理想解的相似性 = √((1-1)^2 + (0.89-0)^2 + (0.78-1)^2) ≈ 1.12

4. 计算综合评分:
根据相似性计算每个供应商的综合评分,使用正负理想解的相对距离。

供应商A:综合评分 = 0.84 / (0.84 + 1.12) ≈ 0.43
供应商B:综合评分 = 1.24 / (0.73 + 1.24) ≈ 0.63
供应商C:综合评分 = 0.26 / (0.26 + 1.12) ≈ 0.19

5. 排序和选择:
根据综合评分对供应商进行排序,并选择得分最高的供应商作为最优解。

综合评分排序:供应商B > 供应商A > 供应商C

因此,在这个例子中,供应商B被认为是最佳供应商,因为它在价格、质量和交货时间准则上相对于其他供应商更接近理想解。

 //

三、补充

TOPSIS是一种解决多属性决策问题的评价方法,亦称理想点解法。

这种方法通过构造评价问题的正理想解和负理想解,即各指标的最优解和最劣解。通过计算每个方案到理想方案(即靠近正理想解和远离负理想解)的相对贴近程度来对备选方案进行排序,从而选出最优方案。

用理想解法求解多属性决策问题的概念简单,只要在属性空间定义适当的距离测度就能计算备选方案与理想方案的距离。为了区分这两个备选方案与正理想解的距离相同的情况,引入备选方案与负理想解的距离,离负理想解远者为优。

这里所指的距离通常是指欧式距离。需要指出的是:正理想解是一个并不存在的虚拟的最佳方案,它的每个属性值都是决策矩阵中该属性的最优值;负理想解是虚拟的最差方案,它的每个属性值都是决策矩阵中该属性的最差值。 

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/76792.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

小程序CSS button按钮自定义高度之后不居中

问题&#xff1a; 按钮设置高度后不居中 <view><button class"btn1" size"">Save</button> </view> page {font-size: 30rpx; }.btn1 {margin-top: 100rpx;height: 190rpx;background: linear-gradient(90deg, #FF8A06, #FF571…

c语言每日一练(8)

前言&#xff1a;每日一练系列&#xff0c;每一期都包含5道选择题&#xff0c;2道编程题&#xff0c;博主会尽可能详细地进行讲解&#xff0c;令初学者也能听的清晰。每日一练系列会持续更新&#xff0c;暑假时三天之内必有一更&#xff0c;到了开学之后&#xff0c;将看学业情…

微信小程序:模板使用

目录 模板的优点&#xff1a; 一、静态模板创建 二、静态模板使用 1.*.wxml引入模板 2.模板使用 3.*.wxss引入模板的样式 三、动态模板创建 四、动态模板使用 1.*.wxml引入模板 2.模板使用 3.*.js定义动态数据 五、结果展示 总结 模板的优点&#xff1a; 有利于保持网…

NVIDIA Omniverse与GPT-4结合生成3D内容

全球各行业对 3D 世界和虚拟环境的需求呈指数级增长。3D 工作流程是工业数字化的核心&#xff0c;开发实时模拟来测试和验证自动驾驶车辆和机器人&#xff0c;操作数字孪生来优化工业制造&#xff0c;并为科学发现铺平新的道路。 如今&#xff0c;3D 设计和世界构建仍然是高度…

HDFS原理剖析

一、概述 HDFS是Hadoop的分布式文件系统&#xff08;Hadoop Distributed File System&#xff09;&#xff0c;实现大规模数据可靠的分布式读写。HDFS针对的使用场景是数据读写具有“一次写&#xff0c;多次读”的特征&#xff0c;而数据“写”操作是顺序写&#xff0c;也就是…

免费开源服务器资源监控系统grafana+prometheus+node_exporter

有项目做测试的时候需要查询服务器资源利用情况&#xff0c;自己又没写相应的模块&#xff0c;此时就需要一套好用的资源监控系统&#xff0c;&#xff0c;咨询了运维人员给推荐了一套&#xff0c;装完后真的很好用。 就是grafanaprometheusnode_exporter&#xff08;linux&am…

DAY3,ARM(LED点灯实验)

1.汇编实现开发板三盏灯点亮熄灭&#xff1b; .text .global _start _start: /**********LED123点灯**************/RCC_INIT:1使能PE10 PF10 PE8RCC..寄存器,E[4]1 F[5]1 0x50000a28ldr r0,0x50000a28ldr r1,[r0]orr r1,r1,#(0x3 << 4)str r1,[r0]LED1_INET:2初始化LED…

Vue3实现图片懒加载及自定义懒加载指令

Vue3实现图片懒加载及自定义懒加载指令 前言1.使用vue3-lazyload插件2.自定义v-lazy懒加载指令2.1 使用VueUse2.2 使用IntersectionObserver 前言 图片懒加载是一种常见性能优化的方式&#xff0c;它只去加载可视区域图片&#xff0c;而不是在网页加载完毕后就立即加载所有图片…

安防监控视频云存储平台EasyNVR通道频繁离线的原因排查与解决

安防视频监控汇聚EasyNVR视频集中存储平台&#xff0c;是基于RTSP/Onvif协议的安防视频平台&#xff0c;可支持将接入的视频流进行全平台、全终端分发&#xff0c;分发的视频流包括RTSP、RTMP、HTTP-FLV、WS-FLV、HLS、WebRTC等格式。为了满足用户的集成与二次开发需求&#xf…

H3C交换机如何配置本地端口镜像并在PC上使用Wireshake抓包

环境: H3C S6520-26Q-SI version 7.1.070, Release 6326 Win 10 专业版 Wireshake Version 4.0.3 问题描述: H3C交换机如何配置本地端口镜像并在PC上使用Wireshake抓包 解决方案: 配置交换机本地端口镜像 1.进入系统视图,并创建本地镜像组1 <H3C>system-vie…

酷开系统 | 酷开科技大数据,更好的与目标消费人群建立联系

众所周知&#xff0c;OTT的一大优势在于强曝光&#xff0c;能够给消费者带来强烈的视觉冲击&#xff0c;强化品牌认知。但是&#xff0c;要想达到提升品牌认知&#xff0c;首先要保证OTT的流量规模&#xff0c;实现对目标人群的有效覆盖。得年轻消费者得“天下”&#xff0c;年…

mac录屏工具,录屏没有声音的解决办法

mac录屏工具&#xff0c;录屏没有声音的解决办法 在使用macbook录制屏幕时&#xff0c;发现自带的录屏工具QuickTime Player没有声音&#xff0c;于是尝试了多款录屏工具&#xff0c;对其做一些经验总结&#xff08;省流&#xff1a;APP Store直接可以免费下载使用Omi录屏专家…

docker tomcat时间少8小时问题解决

docker容器与系统时间一致并且正确&#xff0c;但是java程序在运行中通过log日志发现发了8小时 解决方法 修改docker容器中tomcat/bin/catalina.sh文件&#xff0c;添加一下内容 JAVA_OPTS"$JAVA_OPTS -Dfile.encodingUTF8 -Duser.timezoneGMT08" 附 操作命令 一…

PHP实现轻量级WEB服务器接收HTTP提交的RFID刷卡信息并回应驱动读卡器显示播报语音

本示例使用的读卡器&#xff1a;RFID网络WIFI无线TCP/UDP/HTTP可编程二次开发读卡器POE供电语音-淘宝网 (taobao.com) <?php mb_http_output(utf-8); $port88; $socket socket_create(AF_INET, SOCK_STREAM, SOL_TCP); $bool socket_bind($socket, "0.0.0.0",…

每天一道leetcode:1926. 迷宫中离入口最近的出口(图论中等广度优先遍历)

今日份题目&#xff1a; 给你一个 m x n 的迷宫矩阵 maze &#xff08;下标从 0 开始&#xff09;&#xff0c;矩阵中有空格子&#xff08;用 . 表示&#xff09;和墙&#xff08;用 表示&#xff09;。同时给你迷宫的入口 entrance &#xff0c;用 entrance [entrancerow, …

用dcker极简打包java.jar镜像并启动

用dcker极简打包java.jar镜像并启动 一、本地打包好jar包 二、新建文件夹&#xff0c;将步骤1中的jar包拷贝到文件夹下 三、同目录下新建Dockerfile ## 基础镜像&#xff0c;这里用的是openjdk:8 FROM openjdk:8## 将步骤一打包好的jar包 拷贝到镜像的 跟目录下[目录可以自定义…

Java 单例模式简单介绍

何为单例模式 所谓类的单例设计模式&#xff0c;就是采取一定的方法保证在整个的软件系统中&#xff0c;对某个类只能存在一个对象实例&#xff0c;并且该类只提供一个取得其对象实例的方法。 实现思路 如果我们要让类在一个虚拟机中只能产生一个对象&#xff0c;我们首先必…

医疗PACS源码,支持三维多平面重建、三维容积重建、三维表面重建、三维虚拟内窥镜

C/S架构的PACS系统源码&#xff0c;PACS主要进行病人信息和影像的获取、处理、存储、调阅、检索、管理&#xff0c;并通过网络向全院提供病人检查影像及诊断报告&#xff1b;各影像科室之间共享不同设备的病人检查影像及诊断报告;在诊断工作站上&#xff0c;调阅HIS中病人的其它…

File Inclusion

File Inclusion 服务器执行PHP文件时&#xff0c;可以通过文件包含函数加载另一个文件中的PHP代码&#xff0c;并且当PHP来执行&#xff0c;这会为开发者节省大量的时间。这意味着您可以创建供所有网页引用的标准页眉或菜单文件。当页眉需要更新时&#xff0c;您只更新一个包含…

机器学习样本数据划分的典型Python方法

机器学习样本数据划分的典型Python方法 DateAuthorVersionNote2023.08.16Dog TaoV1.0完成文档撰写。 文章目录 机器学习样本数据划分的典型Python方法样本数据的分类Training DataValidation DataTest Data numpy.ndarray类型数据直接划分交叉验证基于KFold基于RepeatedKFold基…