代码随想录算法训练营第58天|动态规划part15|392.判断子序列、115.不同的子序列

代码随想录算法训练营第58天|动态规划part15|392.判断子序列、115.不同的子序列

392.判断子序列

392.判断子序列

思路:

(这道题也可以用双指针的思路来实现,时间复杂度也是O(n))

这道题应该算是编辑距离的入门题目,因为从题意中我们也可以发现,只需要计算删除的情况,不用考虑增加和替换的情况。

所以掌握本题的动态规划解法是对后面要讲解的编辑距离的题目打下基础。

动态规划五部曲分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。

注意这里是判断s是否为t的子序列。即t的长度是大于等于s的。

  1. 确定递推公式

在确定递推公式的时候,首先要考虑如下两种操作,整理如下:

  • if (s[i - 1] == t[j - 1])
    t中找到了一个字符在s中也出现了
  • if (s[i - 1] != t[j - 1])
    相当于t要删除元素,继续匹配

if (s[i - 1] == t[j - 1]),那么dp[i][j] = dp[i - 1][j - 1] + 1;,因为找到了一个相同的字符,相同子序列长度自然要在dp[i-1][j-1]的基础上加1(如果不理解,在回看一下dp[i][j]的定义)

if (s[i - 1] != t[j - 1]),此时相当于t要删除元素,t如果把当前元素t[j - 1]删除,那么dp[i][j] 的数值就是 看s[i - 1]与 t[j - 2]的比较结果了,即:dp[i][j] = dp[i][j - 1];

  1. dp数组如何初始化

从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],所以dp[0][0]和dp[i][0]是一定要初始化的。

这里大家已经可以发现,在定义dp[i][j]含义的时候为什么要表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。

因为这样的定义在dp二维矩阵中可以留出初始化的区间,如图:

如果要是定义的dp[i][j]是以下标i为结尾的字符串s和以下标j为结尾的字符串t,初始化就比较麻烦了。

dp[i][0] 表示以下标i-1为结尾的字符串,与空字符串的相同子序列长度,所以为0. dp[0][j]同理。

vector<vector<int>> dp(s.size() + 1, vector<int>(t.size() + 1, 0));

  1. 确定遍历顺序

同理从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],那么遍历顺序也应该是从上到下,从左到右

在这里插入图片描述

  1. 举例推导dp数组

在这里插入图片描述

dp[i][j]表示以下标i-1为结尾的字符串s和以下标j-1为结尾的字符串t 相同子序列的长度,所以如果dp[s.size()][t.size()] 与 字符串s的长度相同说明:s与t的最长相同子序列就是s,那么s 就是 t 的子序列。

图中dp[s.size()][t.size()] = 3, 而s.size() 也为3。所以s是t 的子序列,返回true。

代码:

python

class Solution(object):
    def isSubsequence(self, s, t):
        """
        :type s: str
        :type t: str
        :rtype: bool
        """
        dp = [[0] * (len(t)+1) for _ in range(len(s)+1)]
       
        for i in range(1, len(s)+1):
            for j in range(1, len(t)+1):
                if s[i-1] == t[j-1]:
                    dp[i][j] = dp[i-1][j-1] + 1
                else:
                    dp[i][j] = dp[i][j-1]
        
        return dp[-1][-1] == len(s)

115.不同的子序列

115.不同的子序列

思路:

动态规划五部曲:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]。

  1. 确定递推公式

这一类问题,基本是要分析两种情况

  • s[i - 1] 与 t[j - 1]相等
  • s[i - 1] 与 t[j - 1] 不相等

当s[i - 1] 与 t[j - 1]相等时,dp[i][j]可以有两部分组成。

一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。即不需要考虑当前s子串和t子串的最后一位字母,所以只需要 dp[i-1][j-1]。

一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。

这里可能有录友不明白了,为什么还要考虑 不用s[i - 1]来匹配,都相同了指定要匹配啊。

所以当s[i - 1] 与 t[j - 1]相等时,dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];

当s[i - 1] 与 t[j - 1]不相等时,dp[i][j]只有一部分组成,不用s[i - 1]来匹配(就是模拟在s中删除这个元素),即:dp[i - 1][j]

所以递推公式为:dp[i][j] = dp[i - 1][j];

  1. dp数组如何初始化

从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j] 是从上方和左上方推导而来,如图:,那么 dp[i][0] 和dp[0][j]是一定要初始化的。

在这里插入图片描述

每次当初始化的时候,都要回顾一下dp[i][j]的定义,不要凭感觉初始化。

dp[i][0]表示什么呢?

dp[i][0] 表示:以i-1为结尾的s可以随便删除元素,出现空字符串的个数。

那么dp[i][0]一定都是1,因为也就是把以i-1为结尾的s,删除所有元素,出现空字符串的个数就是1。

再来看dp[0][j],dp[0][j]:空字符串s可以随便删除元素,出现以j-1为结尾的字符串t的个数。

那么dp[0][j]一定都是0,s如论如何也变成不了t。

最后就要看一个特殊位置了,即:dp[0][0] 应该是多少。

dp[0][0]应该是1,空字符串s,可以删除0个元素,变成空字符串t。

vector<vector<long long>> dp(s.size() + 1, vector<long long>(t.size() + 1));
for (int i = 0; i <= s.size(); i++) dp[i][0] = 1;
for (int j = 1; j <= t.size(); j++) dp[0][j] = 0; // 其实这行代码可以和dp数组初始化的时候放在一起,但我为了凸显初始化的逻辑,所以还是加上了。
  1. 确定遍历顺序

从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j]都是根据左上方和正上方推出来的。

在这里插入图片描述

所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]可以根据之前计算出来的数值进行计算。

for (int i = 1; i <= s.size(); i++) {
    for (int j = 1; j <= t.size(); j++) {
        if (s[i - 1] == t[j - 1]) {
            dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
        } else {
            dp[i][j] = dp[i - 1][j];
        }
    }
}
  1. 举例推导dp数组

以s:“baegg”,t:"bag"为例,推导dp数组状态如下:

在这里插入图片描述

代码:

python

class Solution:
    def numDistinct(self, s: str, t: str) -> int:
        dp = [[0] * (len(t)+1) for _ in range(len(s)+1)]
        for i in range(len(s)):
            dp[i][0] = 1
        for j in range(1, len(t)):
            dp[0][j] = 0
        for i in range(1, len(s)+1):
            for j in range(1, len(t)+1):
                if s[i-1] == t[j-1]:
                    dp[i][j] = dp[i-1][j-1] + dp[i-1][j]
                else:
                    dp[i][j] = dp[i-1][j]
        return dp[-1][-1]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/76022.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

java.lang.NoClassDefFoundError: org/apache/tez/dag/api/TezConfiguration

错误&#xff1a; java.lang.NoClassDefFoundError: org/apache/tez/dag/api/TezConfigurationat org.apache.hadoop.hive.ql.exec.tez.TezSessionPoolSession$AbstractTriggerValidator.startTriggerValidator(TezSessionPoolSession.java:74)at org.apache.hadoop.hive.ql.e…

MySQL 约束

查看约束 select * from information_schema.table_constraints where table_name要查看的表名按约束的作用范围 列级约束&#xff1a; 将此约束声明在对应字段的后面 表级约束&#xff1a;在表中所有字段都声明完&#xff0c;在所有字段的后面声明的约束&#xff0c;可以声明…

无涯教程-Perl - s函数

描述 这不是功能。这是正则表达式替换运算符。根据PATTERN中指定的正则表达式,将数据替换为REPLACE。与m //一样,分隔符由s后的第一个字符定义。 语法 以下是此函数的简单语法- s/PATTERN/REPLACE/返回值 如果失败,此函数返回0,如果成功,则返回替换次数。 例 以下是显示…

【C++深入浅出】初识C++上篇(关键字,命名空间,输入输出,缺省参数,函数重载)

目录 一. 前言 二. 什么是C 三. C关键字初探 四. 命名空间 4.1 为什么要引入命名空间 4.2 命名空间的定义 4.3 命名空间使用 五. C的输入输出 六. 缺省参数 6.1 缺省参数的概念 6.2 缺省参数的分类 七. 函数重载 7.1 函数重载的概念 7.2 函数重载的条件 7.3 C支…

PDM/PLM系统建设

仅供学习使用&#xff0c;会随时更新 工程机械跨生命周期数据管理系统 来源&#xff1a;清华大学 浅论企业PDM/PLM系统建设成功经验 来源&#xff1a;e-works 作者&#xff1a;陈凡 https://articles.e-works.net.cn/pdm/article149572.htm 随着“中国制造2025”强基工程战略的…

读高性能MySQL(第4版)笔记02_MySQL架构(下)

1. 事务日志 1.1. 事务日志有助于提高事务的效率 1.1.1. 存储引擎只需要更改内存中的数据副本&#xff0c;而不用每次修改磁盘中的表&#xff0c;这会非常快 1.1.2. 更改的记录写入事务日志中&#xff0c;事务日志会被持久化保存在硬盘上 1.2. 事务日志采用的是追加写操作&…

AUTOSAR规范与ECU软件开发(实践篇)3.3 AUTOSAR系统解决方案介绍(下)

示例将遵循AUTOSAR方法论来进行开发&#xff0c; 所用的AUTOSAR解决方案如图3.6所示。 图3.6 AUTOSAR系统解决方案 首先&#xff0c; 使用Matlab/Simulink来实现部分软件组件级的开发&#xff0c; 主要包括LightRequestSWC和LightControlSWC&#xff0c; 并自动生成应用层软件组…

Qt扫盲- Graphics View框架理论综述

Graphics View框架理论综述 一、概述二、Graphics View 体系结构1. The Scene2. The View3. 图元 Item 三、图形视图坐标系统1. 图元Item的坐标2. Scene Scene坐标3. View 视图坐标4. 坐标映射 四、关键特性1. 缩放和旋转2. 打印3. 拖放4. 鼠标指针和 提示5. 动画6. OpenGL渲染…

Coremail AI实验室:利用高级语境和视觉智能进行钓鱼邮件检测

在这个日益数字化的时代&#xff0c;对电子邮件安全需求是至关重要的。新兴的高级威胁邮件&#xff1a;应用社工技术的钓鱼邮件&#xff0c;仿冒公检法的钓鱼邮件等等&#xff0c;都需要更高级的防御策略。 Coremail邮件安全人工智能实验室&#xff0c;整合了高级文本语境理解和…

【实际开发19】- 压测 / 调优准备

目录 1. Jmeter 2. Jmeter 环境部署 1. 配置 : 临时修改语言 ~ Options → Choose Language → Chinese 3. Jmeter 并发测试 0. 提示 : Postman 测试是“串行”的 , 无法测试并发请求 1. daiding 1. Jmeter 下载 : Apache JMeter - Download Apache JMeter 详参&#xf…

蓝帽杯2022

计算机取证 1 内存取证获取开机密码 现对一个windows计算机进行取证&#xff0c;请您对以下问题进行分析解答。 从内存镜像中获得taqi7的开机密码是多少&#xff1f;&#xff08;答案参考格式&#xff1a;abcABC123&#xff09; 首先我们直接对 1.dmp 使用 vol查看 py -2 v…

如何给a-table增加列宽拖动功能

对于table的列宽设置 相信用过的人都知道&#xff0c;想要设置得很完美&#xff0c;几乎是不现实的&#xff0c;因为总有数据或长或短&#xff0c;那我们应该如何优化它呢&#xff1f;那便是让用户自行拖动列宽&#xff0c;从而能看全table的数据&#xff0c;但是对于antd-vue …

公司电脑三维图纸加密、机械图挡加密软件

机械图纸加密软件的问世&#xff0c;让很多的网络公司都大受其带来的工作中的便利。在安装了机械图纸加密软件后&#xff0c;不仅可以很好的管理员工在工作时的上网娱乐&#xff0c;在对整个公司员工的工作效率上也有着明显的提高&#xff0c;那么对于机械图纸加密软件的具体特…

利用Lifecycle,管理一个计时器生命周期

Lifecycle是Android Jetpack中的一个组件&#xff0c;用于管理Android应用程序组件&#xff08;如Activity或Fragment&#xff09;的生命周期。它可以帮助开发者在不同的生命周期阶段执行特定的操作&#xff0c;以便更好地管理资源、处理数据和提供用户体验。 Lifecycle作用 …

Python基础知识:列表推导式详解

前言 嗨喽&#xff0c;大家好呀~这里是爱看美女的茜茜呐 我们经常需要这样处理一个列表&#xff1a; 把一个列表里面的每个元素&#xff0c; 经过相同的处理 &#xff0c;生成另一个列表。 &#x1f447; &#x1f447; &#x1f447; 更多精彩机密、教程&#xff0c;尽在下方…

Lie group 专题:Lie 群

Lie group 专题&#xff1a;Lie 群 流形 流形的定义 一个m维流形是满足以下条件的集合M&#xff1a;存在可数多个称为坐标卡&#xff08;图集&#xff09;的子集合族.以及映到的连通开子集上的一对一映射&#xff0c;,称为局部坐标映射&#xff0c;满足以下条件 坐标卡覆盖M…

最新AI系统ChatGPT网站程序源码+搭建教程/公众号/H5端/安装配置教程/完整知识库

1、前言 SparkAi系统是基于国外很火的ChatGPT进行开发的Ai智能问答系统。本期针对源码系统整体测试下来非常完美&#xff0c;可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。 那么如何搭建部署AI创作ChatGPT&#xff1f;小编这里写一个详细图文教程吧&#xff01;…

结构体和数组结合使用

1、定义结构体 struct Student {int num;char name[32]; }; 2、结构体数组定义 #include<iostream> using namespace std;struct Student {int num;char name[32]; }; int main() {//结构体变量复制方式2struct Student arr[2] { {1,"张三"}, {2,"李四…

《电路》基础知识入门学习笔记

文章目录&#xff1a; 一&#xff1a;电路模型和电路规律 1.电路概述 2.电路模型 3.基本电路物理量&#xff1a;电流、电压、电功率和能量 4.电流和电压的参考方向 5.电路元件—电阻 6. 电路元件—电压源和电流源 7.受控电源 8.基尔霍夫&#xff08;后面都要用这个方法…

主流的嵌入式微处理器

目前主流的嵌入式微处理器系列有&#xff1a; ARM系列 MIPS系列 PowerPC系列 Super H系列 一、MPC/PPC系列 PowerPC(简称PPC),其基本设计源自IBM的POWER.1991年&#xff0c;APPLE(苹果电脑)、IBM、Motorola&#xff08;摩托罗拉&#xff09;组成的AIM联盟发展出Power微处理器…