【C++深入浅出】初识C++上篇(关键字,命名空间,输入输出,缺省参数,函数重载)

    


目录

一. 前言

二. 什么是C++

三. C++关键字初探

四. 命名空间

4.1 为什么要引入命名空间

4.2 命名空间的定义

4.3 命名空间使用

五. C++的输入输出

六. 缺省参数

6.1 缺省参数的概念

6.2 缺省参数的分类

七. 函数重载 

7.1 函数重载的概念

7.2 函数重载的条件

7.3 C++支持函数重载的原因


一. 前言

        旧坑未填,新坑又起。今天我们又要开启一个新的系列:C++深入浅出。振奋人心的C++学习终于来了在本系列中,你能感受到C++相比C语言特有的魅力,尽管学习的过程中可能会充满坎坷,但风雨之后,仰望天空,即使没有彩虹,也会是睛空学完C++后,你甚至可以在C++中用短短几行代码就搞定C语言几十上百行的代码,是不是很神奇,这还只是C++其中的一个强大之处哦。所以,不要恐惧,让我们一起怀着激动的心情打开C++的大门吧

二. 什么是C++

        C语言是结构化和模块化的语言,适合处理较小规模的程序。对于复杂的问题,规模较大的
程序,需要高度的抽象和建模时,C语言则不合适。为了解决软件危机, 20世纪80年代, 计算机
界提出了OOP(object oriented programming:面向对象)思想,支持面向对象的程序设计语言
应运而生。
        1982年,Bjarne Stroustrup博士在C语言的基础上引入并扩充了面向对象的概念,发明了一
种新的程序语言。为了表达该语言与C语言的渊源关系,命名为C++。因此:C++是基于C语言而
产生的,它既可以进行C语言的过程化程序设计(C++兼容C语言),又可以进行以抽象数据类型为特点的基于对象的程序设计,还可以进行面向对象的程序设计

三. C++关键字初探

        在C语言的学习过程中,我们前前后后一共学到了32个关键字。而C++作为C语言的扩展,一共多达63个关键字,如下表所示:

 注:这里稍微知道一下有这些关键字即可,后面学到具体应用时再进行细讲

四. 命名空间

4.1 为什么要引入命名空间

在写C语言代码时,你是否写过类似这样的代码:

#include<stdio.h>
#include<stdlib.h>

int rand = 0;
int main()
{
	printf("%d", rand);
	return 0;
}

当你Ctrl+F5兴冲冲的编译运行时,发现不解情的编译器报出了重定义的错误:

由于预处理阶段会将头文件进行展开,而在我们的stdlib.h头文件中存在着名为rand的随机数函数,而C语言是不允许在相同作用域下定义多个同名符号的,因此会报出重定义的错误。

#include<stdio.h>
#include<stdlib.h>

int rand = 0; //前面已经将rand全局定义为函数,这里又定义为全局变量,顾重定义
int main()
{
	int rand = 0; //这里rand是局部变量,作用域不同,局部优先,因此不会报错
	rand(); //由于rand是局部优先,这里的rand是个局部变量,顾无法作为函数使用,报错
	printf("%d", rand);
	return 0;
}

在上面的代码中,我们无论将rand定义成全局变量还是局部变量,都无法实现我们想要的效果,那怎么办呢?将rand变量的名字换一个呗,得不到就不要强求啦


但是在C++中,新增了命名空间来对标识符的名称进行本地化,以避免命名冲突或名字污染,上面的问题就被很好的解决了。

所以说,努力拓展提升自己,能力够了自然也就得到了

4.2 命名空间的定义

定义命名空间,需要使用到namespace关键字,后面跟命名空间的名字,然后接一对{}即可。{}中的内容即为命名空间的成员。命名空间内的成员可以是变量,也可以是函数、类型,甚至可以是另一个命名空间。

namespace Dream //namespace关键字 + 命名空间名称
{
	//命名空间内定义变量
	int a;
	int b = 10;

	//命名空间内定义函数
	int add(int x,int y)
	{
		return x + y;
	}

	//命名空间内定义类型
	struct Stack
	{
		int* a;
		int top;
		int capacity;
	};

	//命名空间嵌套定义
	namespace other
	{
		int a;
		int b = 10;
	}

}

注意:一个命名空间定义了一个新的作用域,命名空间中的所有内容都局限于该命名空间中

此外, 如果我们在同一工程中定义了两个相同名称的命名空间(无论在哪个文件),编译器最终会合并到同一个命名空间中

//test1.cpp
namespace Dream
{
	int a = 5;
	int b = 10;
}

//test2.cpp
namespace Dream
{
	int Add(int x, int y)
	{
		return x + y;
	}
}

//上面两个同名命名空间编译器最终会进行合并,结果如下:
namespace Dream
{
	int a = 5;
	int b = 10;

	int Add(int x, int y)
	{
		return x + y;
	}
}

4.3 命名空间使用

那么,定义了命名空间后,我们要如何使用它呢?如果我们直接对命名空间的成员进行访问,编译器会报错:

#include<stdio.h>
namespace Dream
{
	int b = 10;
}
int main()
{
	printf("%d", b); //报错,b只在Dream作用域内有效
	return 0;
}


 我们一般有一下三种使用方法:

1、变量名前加命名空间名称及作用域限定符

namespace Dream
{
	int b = 10;
	namespace other
	{
		int b = 5;
	}
}

int main()
{
	printf("%d", Dream::b); //表示Dream命名空间内的b,即输出10
    printf("%d", Dream::other::b); //表示Dream命名空间内的other命名空间内的b,即输出5
	return 0;
}

分析:两个变量b虽然名称相同,但被划分到了两个命名空间中,作用域不同,因此不会出现重定义的问题。并且,通过在前面加上对应的命名空间我们可以实现对这两个变量b的访问。

2、使用using将命名空间中某个成员展开

      但是如果命名空间中的某个变量需要在程序中频繁的进行使用,每次都要在前面加上命名空间未免显得过于繁琐,因此C++还允许我们使用using关键字将命名空间中某个成员展开

namespace Dream
{
	int a = 5;
	int b = 10;
}

using Dream::a;

//int a = 10;  //由于上方将变量a展开,a的作用域相当于全局,这里如果再定义a会重定义
int main()
{
	a += 10; //引入了a,顾不需要再前面加上命名空间
	printf("%d\n", a);
	printf("%d", Dream::b); //而变量b没有展开,故需加上命名空间
	return 0;
}

3、使用using naespace 将整个命名空间展开

      当然,如果你愿意的话,你也可以将整个命名空间展开,这样整个命名空间的东西都将暴露在全局。具体方式如下

namespace Dream
{
	int a = 5;
	int b = 10;
}

using namespace Dream; //展开后使用命名空间内的变量就无需再加前缀
int main()
{
	a += 10;
	printf("%d\n", a);
	printf("%d", b);
	return 0;
}

        下面,我们再来看看许多C++程序中经常出现的写法就很清楚了:

#include<iostream>
using namespace std;
int main()
{
	return 0;
}
  • 第一条语句的作用是包含输入输出流,下面我们会进行说明,这里我们可以暂且将理解为C语言的#include<stdio.h>
  • 第二条语句是不是很熟悉啦,没错,就是用来展开命名空间std的。std的英文全拼是Standard,即标准的意思。C++标准程序库中的所有标识符都被定义在这个命名空间中。顾这里将整个命名空间引入是为了后续更方便的使用C++标准程序库的标识符,如函数、类型等等。

但是,虽然方便,但在实际工程中并不建议直接将整个命名空间展开。原因是在大规模工程中,定义的变量太多,可能会出现定义的变量名与std命名空间的标识符出现重复的情况,此时如果将std全部展开就会出现重定义的BUG。


故比起将命名空间全部展开,我们更推荐使用第一种或者第二种使用方式。

 五. C++的输入输出

在学习C语言时,我们写的第一个代码就是hello world,那么在我们第一次接触C++时,是不是也应该使用C++对美好的世界打个招呼呢?我们来试试C++是怎么实现输入输出的吧!

#include<iostream>
using namespace std; //展开std命名空间
int main()
{
	cout << "hello world!!!" << endl; //打印输出
	return 0;
}

 下面我们来分析分析上面的代码


1、使用cout标准输出对象(控制台)cin标准输入对象(键盘)时,必须包含<iostream>头文件
以及按命名空间使用方法使用std。是的,iostream也是一个头文件噢。

2、cout和cin是全局的流对象,它们分别是ostream和istream类型的对象。而endl是特殊的C++符号,表示换行输出,他们都包含在包含在<iostream>头文件中。

3、<<是流插入运算符,>>是流提取运算符。它们是不是和我们C语言学到的左移和右移一模一样?是的,这实际上是一种运算符重载,我们后续会提到。

4、使用C++输入输出更方便,不需要像printf/scanf输入输出时那样需要手动控制格式,即%d、%f等等。C++的输入输出可以自动识别变量类型


注意:早期标准库将所有功能在全局域中实现,声明在.h后缀的头文件中,使用时只需包含对应头文件即可,后来将其实现在std命名空间下,为了和C语言头文件区分,也为了正确使用命名空间,规定C++头文件不带.h,这就是为什么<iostream>也是头文件的原因。旧编译器(vc 6.0)中还支持<iostream.h>格式,后续编译器已不支持,因此推荐使用<iostream>+std的方式


六. 缺省参数

6.1 缺省参数的概念

      缺省参数是声明或定义函数时为函数的参数指定一个缺省值(默认值)。在调用该函数时,如果没有指定实参则采用该形参的缺省值,否则使用指定的实参。具体形式如下:

#include<iostream>
using namespace std;

void Func(int a = 0) //给定缺省值0
{
	cout << a << endl;
}

int main()
{
	Func(); // 没有传参时,使用参数的默认值
	Func(10); // 传参时,使用指定的实参
	return 0;
}


6.2 缺省参数的分类

       缺省参数分为全缺省参数半缺省参数

       全缺省参数

       即所以参数都带有缺省值

void Func(int a = 10, int b = 20, int c = 30)
{
    cout<<"a = "<<a<<endl;
    cout<<"b = "<<b<<endl;
    cout<<"c = "<<c<<endl;
}
int main()
{
	Func(); 
	Func(10); 
    Func(20,30,40); 
	return 0;
}

       半缺省参数

        即部分参数都带有缺省值

void Func(int a, int b = 10, int c = 20) //除了a其余参数都有缺省值
{
    cout<<"a = "<<a<<endl;
    cout<<"b = "<<b<<endl;
    cout<<"c = "<<c<<endl;
}

int main()
{
	Func();  //错误调用,第一个参数没有缺省值,需要传参
	Func(10); //第一个参数传入10,其余参数用缺省值
    Func(20,30,40); //全部用指定的实参
	return 0;
}

        注意事项

  • 规定半缺省参数必须从右往左依次给出,不能间隔着给。示例如下:
    //错误写法,必须从右往左不间断
    void Func(int a = 10, int b, int c) {};
    void Func(int a = 10, int b = 20, int c) {};
    void Func(int a = 10, int b, int c = 30) {};
    
    //正确写法
    void Func(int a, int b, int c = 30) {};
    void Func(int a, int b = 20, int c = 30) {};
  • 缺省参数不能在函数声明和定义中同时出现。其目的是为了防止我们在声明和定义中给出了不同的缺省值,从而导致歧义。

    //错误的写法
    //test.h
    void Func(int a = 10);
    // a
    test.cpp
    void Func(int a = 20)
    {}
  • 缺省值必须是常量或者全局变量

  • C语言不支持带缺省参数的函数(编译器不支持)


七. 函数重载 

7.1 函数重载的概念

函数重载:它是一种函数的特殊情况。C++允许在同一作用域中声明几个功能类似的同名函数,这
些同名函数的形参列表(参数个数 或 类型 或 类型顺序)不同,常用来处理实现功能类似、数据类型不同的问题。

假设我们要写一个Add函数实现两个整型以及两个浮点型的相加,在C语言中,我们应该这么写:

//C语言写法
int iAdd(int x, int y)
{
	return x + y;
}
double dAdd(double x, double y)
{
	return x + y;
}
int main()
{
	iAdd(1, 2);
	dAdd(1.0, 2.0);
	return 0;
}

由于实参的类型不同,我们需要写两个Add函数分别实现整形和浮点型的相加,并且为了避免重定义,两个函数名必须不同,难道这不觉得很别扭吗

C++引入了函数重载,我们就能很舒服的使用相同名称来定义这两个参数不同的函数:

//C++写法,两个Add函数构成函数重载
int Add(int x, int y)
{
	return x + y;
}

double Add(double x, double y)
{
	return x + y;
}

int main()
{
	Add(1, 2);
	Add(1.0, 2.0);
	return 0;
}

7.2 函数重载的条件

       C++构成函数重载的条件是形参列表必须不同。形参列表不同分为以下三种:

        1、参数个数不同

#include<iostream>
using namespace std;
//2、参数个数不同
void Fun(int x)
{
	cout << "void Fun(int x)" << endl;
}
void Fun()
{
	cout << "void Fun()" << endl;
}

int main()
{
	Fun(1); //调用第一个
	Fun(); //调用第二个
}

        2、参数类型不同

#include<iostream>
using namespace std;
//2、参数类型不同
int Add(int x, int y)
{
	cout << "int Add(int x, int y)" << endl;
	return x + y;
}
double Add(double x, double y)
{
	cout << "double Add(double x, double y)" << endl;
	return x + y;
}

int main()
{
	Add(1, 2); //调用第一个
	Add(1.0, 2.0); //调用第二个
}

        3、参数顺序不同

#include<iostream>
using namespace std;
//3、参数顺序不同
void Fun(int x , double y)
{
	cout << "void Fun(int x , double y)" << endl;
}
void Fun(double x, int y)
{
	cout << "void Fun(double x, int y)" << endl;
}

int main()
{
	Fun(1,2.0); //调用第一个
	Fun(2.0,1); //调用第二个
}

注意:是参数类型的顺序不同,而不是变量名顺序不同,即以下写法不构成函数重载:

//变量名顺序不同不构成函数重载,形参的名称只是标识,本质上还是同一个函数
void Fun(int x , double y){};
void Fun(int y , double x){};

         4、缺省函数的重载

         此外,带缺省参数的函数也可以构成函数重载,编译并不会报错,但使用上可能会出现一些很尴尬的问题,举例如下

#include<iostream>
using namespace std;
//4、缺省函数的重载
void Fun(int x, double y = 1.0)
{
	cout << "void Fun(int x , double y = 1.0 )" << endl;
}
void Fun(int x)
{
	cout << "void Fun(int x)" << endl;
}
int main()
{
	Fun(1, 2.0); //这里会调用第一个函数没问题
	Fun(1); //此时既可以调用第一个函数,也可以调用第二个函数,存在歧义,会报错
}

由于缺省函数的重载很容易引发歧义,顾我们一般不也会这么写  

7.3 C++支持函数重载的原因

        可能会有很多小伙伴会疑惑:为什么C++支持函数重载,而C语言不支持函数重载呢?、

        在C/C++中,一个程序要运行起来,需要经历以下几个阶段:预处理编译汇编链接

我们发现,每个.c文件都会生成属于自己的符号表。main.c文件中sum函数只是声明,故在符号表中并没有sum函数的地址。而sum.c文件中的sum函数是定义,故在符号表中存在着sum函数的地址。当链接器进行链接时,就会将两张符号表进行合并,此时符号表中既有main函数的地址,也有sum函数的地址,程序便可以正常运行。


但是,如果两个文件中的sum函数都是定义呢?如下: 

由于两个符号表中的sum函数都是有效地址,进行符号表合并后,符号表就会出现上面的相同符号不同地址的情况,会引发符号表的歧义,此时我们就不知道该去哪个地方找sum函数了,会报重定义的错误。

 这就是为什么C语言不能定义同名函数的原因:重定义会引发符号表的歧义


那就有人会想:C语言不行,那凭什么放到C++就可以呢,搞特殊?

首先要说明的是,上面的两个Add函数放到C++依然不构成函数重载,因为它们的类型相同。那C++为什么类型不同就允许同名函数的存在呢?这是因为C++引入了函数名修饰规则,函数在符号表中除了名称,还一并将参数类型代入修饰。

不同的编译器下的函数名修饰规则可能有所不同,由于VS的函数名修饰规则过于复杂,下面我们采用Linux下的g++来进行演示

源代码清单

int Add(int x,int y)
{
    return x + y;
}

double Add(double x,double y)
{
    return x + y;
}

int main()
{
    return 0;
}

采用gcc编译(C语言)

为了正确进行编译,将第一个Add函数改为Add1,第二个改为Add2。编译后查看汇编代码如下:

采用g++编译(C++)

Linux系统下的g++编译器将函数修饰后变成【_Z+函数长度+函数名+类型首字母】的形式,形参的个数、顺序以及类型不同都会使得修饰后的函数名不同


 总结提炼

  1. 在linux下,采用gcc编译完成后,函数名字没有发生改变。
  2. 在linux下,采用g++编译完成后,函数名字的修饰发生改变,编译器将函数参数类型信息添加到修改后的名字中。
  3. C语言没办法支持重载是因为同名函数没办法区分。而C++是通过函数修饰规则来区分,只要参数不同,修饰出来的名字就不一样,顾支持重载。
  4. 如果两个函数仅仅是返回值不同是不构成重载的,因为调用时编译器没办法区分。


以上,就是本期的全部内容啦🌸

制作不易,能否点个赞再走呢🙏

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/76016.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

PDM/PLM系统建设

仅供学习使用&#xff0c;会随时更新 工程机械跨生命周期数据管理系统 来源&#xff1a;清华大学 浅论企业PDM/PLM系统建设成功经验 来源&#xff1a;e-works 作者&#xff1a;陈凡 https://articles.e-works.net.cn/pdm/article149572.htm 随着“中国制造2025”强基工程战略的…

读高性能MySQL(第4版)笔记02_MySQL架构(下)

1. 事务日志 1.1. 事务日志有助于提高事务的效率 1.1.1. 存储引擎只需要更改内存中的数据副本&#xff0c;而不用每次修改磁盘中的表&#xff0c;这会非常快 1.1.2. 更改的记录写入事务日志中&#xff0c;事务日志会被持久化保存在硬盘上 1.2. 事务日志采用的是追加写操作&…

AUTOSAR规范与ECU软件开发(实践篇)3.3 AUTOSAR系统解决方案介绍(下)

示例将遵循AUTOSAR方法论来进行开发&#xff0c; 所用的AUTOSAR解决方案如图3.6所示。 图3.6 AUTOSAR系统解决方案 首先&#xff0c; 使用Matlab/Simulink来实现部分软件组件级的开发&#xff0c; 主要包括LightRequestSWC和LightControlSWC&#xff0c; 并自动生成应用层软件组…

Qt扫盲- Graphics View框架理论综述

Graphics View框架理论综述 一、概述二、Graphics View 体系结构1. The Scene2. The View3. 图元 Item 三、图形视图坐标系统1. 图元Item的坐标2. Scene Scene坐标3. View 视图坐标4. 坐标映射 四、关键特性1. 缩放和旋转2. 打印3. 拖放4. 鼠标指针和 提示5. 动画6. OpenGL渲染…

Coremail AI实验室:利用高级语境和视觉智能进行钓鱼邮件检测

在这个日益数字化的时代&#xff0c;对电子邮件安全需求是至关重要的。新兴的高级威胁邮件&#xff1a;应用社工技术的钓鱼邮件&#xff0c;仿冒公检法的钓鱼邮件等等&#xff0c;都需要更高级的防御策略。 Coremail邮件安全人工智能实验室&#xff0c;整合了高级文本语境理解和…

【实际开发19】- 压测 / 调优准备

目录 1. Jmeter 2. Jmeter 环境部署 1. 配置 : 临时修改语言 ~ Options → Choose Language → Chinese 3. Jmeter 并发测试 0. 提示 : Postman 测试是“串行”的 , 无法测试并发请求 1. daiding 1. Jmeter 下载 : Apache JMeter - Download Apache JMeter 详参&#xf…

蓝帽杯2022

计算机取证 1 内存取证获取开机密码 现对一个windows计算机进行取证&#xff0c;请您对以下问题进行分析解答。 从内存镜像中获得taqi7的开机密码是多少&#xff1f;&#xff08;答案参考格式&#xff1a;abcABC123&#xff09; 首先我们直接对 1.dmp 使用 vol查看 py -2 v…

如何给a-table增加列宽拖动功能

对于table的列宽设置 相信用过的人都知道&#xff0c;想要设置得很完美&#xff0c;几乎是不现实的&#xff0c;因为总有数据或长或短&#xff0c;那我们应该如何优化它呢&#xff1f;那便是让用户自行拖动列宽&#xff0c;从而能看全table的数据&#xff0c;但是对于antd-vue …

公司电脑三维图纸加密、机械图挡加密软件

机械图纸加密软件的问世&#xff0c;让很多的网络公司都大受其带来的工作中的便利。在安装了机械图纸加密软件后&#xff0c;不仅可以很好的管理员工在工作时的上网娱乐&#xff0c;在对整个公司员工的工作效率上也有着明显的提高&#xff0c;那么对于机械图纸加密软件的具体特…

利用Lifecycle,管理一个计时器生命周期

Lifecycle是Android Jetpack中的一个组件&#xff0c;用于管理Android应用程序组件&#xff08;如Activity或Fragment&#xff09;的生命周期。它可以帮助开发者在不同的生命周期阶段执行特定的操作&#xff0c;以便更好地管理资源、处理数据和提供用户体验。 Lifecycle作用 …

Python基础知识:列表推导式详解

前言 嗨喽&#xff0c;大家好呀~这里是爱看美女的茜茜呐 我们经常需要这样处理一个列表&#xff1a; 把一个列表里面的每个元素&#xff0c; 经过相同的处理 &#xff0c;生成另一个列表。 &#x1f447; &#x1f447; &#x1f447; 更多精彩机密、教程&#xff0c;尽在下方…

Lie group 专题:Lie 群

Lie group 专题&#xff1a;Lie 群 流形 流形的定义 一个m维流形是满足以下条件的集合M&#xff1a;存在可数多个称为坐标卡&#xff08;图集&#xff09;的子集合族.以及映到的连通开子集上的一对一映射&#xff0c;,称为局部坐标映射&#xff0c;满足以下条件 坐标卡覆盖M…

最新AI系统ChatGPT网站程序源码+搭建教程/公众号/H5端/安装配置教程/完整知识库

1、前言 SparkAi系统是基于国外很火的ChatGPT进行开发的Ai智能问答系统。本期针对源码系统整体测试下来非常完美&#xff0c;可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。 那么如何搭建部署AI创作ChatGPT&#xff1f;小编这里写一个详细图文教程吧&#xff01;…

结构体和数组结合使用

1、定义结构体 struct Student {int num;char name[32]; }; 2、结构体数组定义 #include<iostream> using namespace std;struct Student {int num;char name[32]; }; int main() {//结构体变量复制方式2struct Student arr[2] { {1,"张三"}, {2,"李四…

《电路》基础知识入门学习笔记

文章目录&#xff1a; 一&#xff1a;电路模型和电路规律 1.电路概述 2.电路模型 3.基本电路物理量&#xff1a;电流、电压、电功率和能量 4.电流和电压的参考方向 5.电路元件—电阻 6. 电路元件—电压源和电流源 7.受控电源 8.基尔霍夫&#xff08;后面都要用这个方法…

主流的嵌入式微处理器

目前主流的嵌入式微处理器系列有&#xff1a; ARM系列 MIPS系列 PowerPC系列 Super H系列 一、MPC/PPC系列 PowerPC(简称PPC),其基本设计源自IBM的POWER.1991年&#xff0c;APPLE(苹果电脑)、IBM、Motorola&#xff08;摩托罗拉&#xff09;组成的AIM联盟发展出Power微处理器…

stack+queue

适配器 介绍 在C的标准模板库&#xff08;STL&#xff09;中&#xff0c;有几种适配器&#xff0c;它们是一些容器或函数对象的包装&#xff0c;提供了不同的接口和功能&#xff0c;用于适应特定的需求 分类 STL中的适配器可以分为两类&#xff1a;容器适配器和迭代器适配器 容…

6.3 社会工程学攻击

数据参考&#xff1a;CISP官方 目录 社会工程学攻击概念社会工程学攻击利用的人性 “弱点”典型社会工程学攻击方式社会工程学攻击防护 一、社会工程学攻击概念 什么是社会工程学攻击 也被称为 "社交工程学" 攻击利用人性弱点 (本能反应、贪婪、易于信任等) 进…

AUTOSAR规范与ECU软件开发(实践篇)3.2 ETAS AUTOSAR系统解决方案介绍(上)

1、ETAS AUTOSAR系统解决方案介绍 博世集团ETAS公司基于其强大的研发实力为用户提供了一套高效、 可靠的AUTOSAR系统解决方案&#xff0c; 该方案覆盖了软件架构设计、 应用层模型设计、 基础软件开发、 软件虚拟验证等各个方面&#xff0c; 如图3.5所示&#xff0c; 其中深色…

大语言模型之一 Attention is all you need ---Transformer

大语言模型已经在很多领域大显身手&#xff0c;其应用包括只能写作、音乐创作、知识问答、聊天、客服、广告文案、论文、新闻、小说创作、润色、会议/文章摘要等等领域。在商业上模型即产品、服务即产品、插件即产品&#xff0c;任何形态的用户可触及的都可以是产品&#xff0c…