Submit Page TestData Time Limit: 1 Sec Memory Limit: 128 Mb Submitted: 93 Solved: 49
Description
求解下述线性规划模型的最优值min �1�1+�2�2+�3�3�.�. �11�1+�12�2+�13�3≤�1>0�21�1+�22�2+�23�3≤�2>0�31�1+�32�2+�33�3≤�3>0�1,�2,�3≥0
Input
依次输入�1�2�3�11�12�13�1�21�22�23�2�31�32�33�3
Output
目标函数最优值,保留小数点后两位有效数字。若无最优解,输出“No solution”。
Sample
#0
Input
Copy
1 -2 0 1 -1 0 1 -2 1 0 4 1 1 1 10
Output
Copy
-14.00
Hint
#include <iostream>
#include <cmath>
#include "stdio.h"
using namespace std;
#define M 10000
double kernel[110][310];
int m = 0, n = 0, t = 0;
void input()
{
// cin >> n;
// cin >> m;
m = 3;
n = 3;
int i, j;
// 初始化核心向量
for (i = 0; i <= m + 1; i++)
for (j = 0; j <= n + m + m; j++)
kernel[i][j] = 0;
for (i = 1; i <= n; i++)
cin >> kernel[0][i];
for (i = 1; i <= m; i++)
{
// cout<<" 不等式"<<i<<" ";
for (j = 1; j <= n + 2; j++)
{
if (j == n + 1)
{
kernel[i][j] = 1;
}
else
{
cin >> kernel[i][j];
}
}
}
for (i = 1; i <= m; i++)
{
kernel[i][0] = kernel[i][n + 2];
kernel[i][n + 2] = 0;
}
t = 1;
if (t == -1)
for (i = 1; i <= n; i++)
kernel[0][i] = (-1) * kernel[0][i];
for (i = 1; i <= m; i++)
{
kernel[i][n + i] = kernel[i][n + 1];
if (i != 1)
kernel[i][n + 1] = 0;
}
}
// 算法函数
void comput()
{
int i, j, flag, temp1, temp2, h, k = 0, temp3[100];
double a, b[110], temp, temp4[110], temp5[110], f = 0, aa, d, c;
for (i = 1; i <= m; i++)
temp3[i] = 0.0000;
for (i = 0; i < 11; i++)
{
temp4[i] = 0.000;
temp5[i] = 0.0000;
}
for (i = 1; i <= m; i++)
{
if (kernel[i][n + i] == -1)
{
kernel[i][n + m + i] = 1;
kernel[0][n + m + i] = M;
temp3[i] = n + m + i;
}
else
temp3[i] = n + i;
}
for (i = 1; i <= m; i++)
temp4[i] = kernel[0][temp3[i]];
do
{
for (i = 1; i <= n + m + m; i++)
{
a = 0;
for (j = 1; j <= m; j++)
a += kernel[j][i] * temp4[j];
kernel[m + 1][i] = kernel[0][i] - a;
}
for (i = 1; i <= n + m + m; i++)
{
if (kernel[m + 1][i] >= 0)
flag = 1;
else
{
flag = -1;
break;
}
}
if (flag == 1)
{
for (i = 1; i <= m; i++)
{
if (temp3[i] <= n + m)
temp1 = 1;
else
{
temp1 = -1;
break;
}
}
if (temp1 == 1)
{
// cout << " 此线性规划的最优解存在!" << endl << endl << " 最优解为:" << endl << endl << " ";
for (i = 1; i <= m; i++)
temp5[temp3[i]] = kernel[i][0];
for (i = 1; i <= n; i++)
f += t * kernel[0][i] * temp5[i];
for (i = 1; i <= n; i++)
{
// cout << "x" << i << " = " << temp5[i];
// if (i != n)
// cout << ", ";
}
// cout << " ;" << endl << endl << " 最优目标函数值f= " << f << endl << endl;
printf("%.2f\n", f);
return;
}
else
{
// cout << " 此线性规划无解" << endl << endl;
cout<<"No solution"<<endl;
return;
}
}
if (flag == -1)
{
temp = 100000;
for (i = 1; i <= n + m + m; i++)
if (kernel[m + 1][i] < temp)
{
temp = kernel[m + 1][i];
h = i;
}
for (i = 1; i <= m; i++)
{
if (kernel[i][h] <= 0)
temp2 = 1;
else
{
temp2 = -1;
break;
}
}
}
if (temp2 == 1)
{
cout<<"No solution"<<endl;
// cout << "此线性规划无约束";
return;
}
if (temp2 == -1)
{
c = 100000;
for (i = 1; i <= m; i++)
{
if (kernel[i][h] != 0)
b[i] = kernel[i][0] / kernel[i][h];
if (kernel[i][h] == 0)
b[i] = 100000;
if (b[i] < 0)
b[i] = 100000;
if (b[i] < c)
{
c = b[i];
k = i;
}
}
temp3[k] = h;
temp4[k] = kernel[0][h];
d = kernel[k][h];
for (i = 0; i <= n + m + m; i++)
kernel[k][i] = kernel[k][i] / d;
for (i = 1; i <= m; i++)
{
if (i == k)
continue;
aa = kernel[i][h];
for (j = 0; j <= n + m + m; j++)
kernel[i][j] = kernel[i][j] - aa * kernel[k][j];
}
}
} while (1);
return;
}
int main()
{
input();
for (int i = 1; i < n; i++)
{
for (int j = 1; j < m + 2; j++)
{
// cout<<kernel[i][j]<<" ";
}
// cout<<endl;
}
comput();
// int a = 0;
// scanf("%d", &a);
// cout<<f<<endl;
return 0;
}