Spark学习3.0

目录

10.3.4 Spark运行原理

 1.设计背景

 2.RDD概念

 3.RDD特性

 4.RDD之间的依赖关系

 窄依赖和宽依赖

5.Stage的划分

 Stage的类型包括两种:ShuffleMapStage和ResultStage

 6.RDD运行过程


10.3.4 Spark运行原理

 1.设计背景

许多 迭代式算法(比如机器学习、图算法等)和交互式数据挖掘工具 共同之处是,不同计算阶段之间会重用中间 结果
目前的MapReduce框架都是把中间结果写入到HDFS中,带来了大量的数据复制、磁盘IO和序列化开销

RDD就是为了满足这种需求而出现的,它提供了一个抽象的数据架构,我们不必担心底层数据的分布式特性,只需将具体的应用逻辑表达为一系列转换处理,不同RDD之间的转换操作形成依赖关系,可以实现管道化,避免中间数据存储,大大降低了数据复制、磁盘IO和序列化开销

 2.RDD概念

一个RDD就是一个分布式对象集合,本质上是一个只读的分区记录集合,每个RDD可分成多个分区,每个分区就是一个数据集片段,并且一个RDD的不同分区可以被保存到集群中不同的节点上,从而可以在集群中的不同节点上进行并行计算

RDD提供了一种高度受限的共享内存模型,即RDD是只读的记录分区的集合,不能直接修改,只能基于稳定的物理存储中的数据集创建RDD,或者通过在其他RDD上执行确定的转换操作(如mapjoingroup by)而创建得到新的RDD

RDD 提供了一组丰富的操作以支持常见的数据运算,分为 “动作”( Action “转换”( Transformation 两种类型
RDD 提供的 转换 接口都非常简单,都是类似 map filter groupBy join 等粗粒度的数据转换操作,而不是针对某个数据项的细粒度修改 (不适合网页爬虫)
表面上 RDD 的功能很受限、不够强大 实际上 RDD 已经被实践证明可以高效地表达许多框架的编程模型 比如 MapReduce SQL Pregel
Spark Scala 语言实现了 RDD API ,程序员可以通过调用 API 实现对 RDD 的各种操作
RDD 典型的执行过程如下:
RDD 读入外部数据源进行创建
RDD 经过一系列的转换( Transformation )操作,每一次都会产生不同的 RDD ,供给下一个转换操作使用
最后一个 RDD 经过“动作”操作进行转换,并输出到外部数据源

RDD采用了惰性调用:RDD的执行过程中,真正的计算发生在RDD的“行动”操作,对于行动之前的所有“转换”操作Spark只是会记录下“转换”操作应用的一些基础数据集以及RDD生成的轨迹,即相互依赖关系,而不会触发真正的计算。

上述这一系列处理称为一个“血缘关系(Lineage)”,即DAG拓扑排序的结果。采用惰性调用,通过血缘关系连接起来的一系列RDD操作就可以实现管道化(pipeline),避免了多次转换操作之间数据同步的等待,而且不用担心有过多的中间数据,因为这些具有血缘关系的操作都管道化了,一个操作得到的结果不需要保存为中间数据,而是直接管道式地流入到下一个操作进行处理。

同时,这种通过血缘关系把一系列操作进行管道化连接的设计方式,也使得管道中每次操作的计算变得相对简单,保证了每个操作在处理逻辑上的单一性;相反,在MapReduce的设计中,为了尽可能地减少MapReduce过程,在单个MapReduce中会写入过多复杂的逻辑。

一个Spark的“Hello World”程序:以一个“Hello World”入门级Spark程序来解释RDD执行过程,这个程序的功能是读取一个HDFS文件,计算出包含字符串“Hello World”的行数。

创建这个 Spark 程序的执行上下文,即创建 SparkContext 对象
从外部数据源(即 HDFS 文件)中读取数据创建 fileRDD 对象;
构建 fileRDD filterRDD 之间的依赖关系,形成 DAG 图,这时候并没有发生真正的计算,只是记录转换的轨迹
执行到第 5 行代码时, count() 是一个行动类型的操作,触发真正的计算,开始实际执行从 fileRDD filterRDD 的转换操作,并把结果持久化到内存中,最后计算出 filterRDD 中包含的元素个数。

3.RDD特性

Spark采用RDD以后能够实现高效计算的原因主要在于:

1高效的容错性

现有容错机制:数据复制或者记录日志

RDD:血缘关系、重新计算丢失分区、无需回滚系统、重算过程在不同节点之间并行、只记录粗粒度的操作

2中间结果持久化到内存数据在内存中的多个RDD操作之间进行传递避免了不必要的读写磁盘开销

(3)存放的数据可以是Java对象,避免了不必要的对象序列化和反序列化

 4.RDD之间的依赖关系

RDD不同操作,会使得RDD分区之间产生不同的依赖关系,DAG调度器根据RDD之间的依赖关系,把DAG划分为若干个阶段,依赖关系分为窄依赖和宽依赖,二者主要区别:是否包含Shuffle操作。

窄依赖和宽依赖

窄依赖表现为一个父 RDD 的分区对应于一个子 RDD 的分区或多个父 RDD 的分区对应于一个子 RDD 的分区
宽依赖则表现为存在一个父 RDD 的一个分区对应一个子 RDD 的多个分区

5.Stage的划分

Spark通过分析各个RDD的依赖关系生成了DAG,再通过分析各个RDD中的分区之间的依赖关系来决定如何划分Stage,具体划分方法是:

DAG中进行反向解析,遇到宽依赖就断开
遇到窄依赖就把当前的RDD加入到Stage
将窄依赖尽量划分在同一个Stage中,可以实现流水线计算

 Stage的类型包括两种:ShuffleMapStageResultStage

  Stage 的类型包括两种: ShuffleMapStage ResultStage ,具体如下:
  1 ShuffleMapStage :不是最终的 Stage ,在它之后还有其他 Stage ,所以,它的输出一定需要经过 Shuffle 过程,并作为后续 Stage 的输入;这种 Stage 是以 Shuffle 为输出边界,其输入边界可以是从外部获取数据,也可以是另一个 ShuffleMapStage 的输出,其输出可以是另一个 Stage 的开始;在一个 Job 里可能有该类型的 Stage ,也可能没有该类型 Stage

2ResultStage:最终的Stage,没有输出,而是直接产生结果或存储。这种Stage是直接输出结果,其输入边界可以是从外部获取数据,也可以是另一个ShuffleMapStage的输出。在一个Job里必定有该类型Stage

因此,一个Job含有一个或多个Stage其中至少含有一个ResultStage

 6.RDD运行过程

通过上述对RDD概念、依赖关系和Stage划分的介绍,结合之前介绍的Spark运行基本流程,再总结一下RDDSpark架构中的运行过程:

1)创建RDD对象;

2SparkContext负责计算RDD之间的依赖关系,构建DAG

3DAGScheduler负责把DAG图分解成多个Stage,每个Stage中包含了多个Task,每个Task会被TaskScheduler分发给各个WorkerNode上的Executor去执行。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/759462.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【C++】————string基础用法及部分函数底层实现

作者主页: 作者主页 本篇博客专栏:C 创作时间 :2024年6月30日 前言: 本文主要介绍STL容器之一 ---- string,在学习C的过程中,我们要将C视为一个语言联邦(摘录于Effective C 条款一&#x…

读书笔记-《Spring技术内幕》(三)MVC与Web环境

前面我们学习了 Spring 最核心的 IoC 与 AOP 模块(读书笔记-《Spring技术内幕》(一)IoC容器的实现、读书笔记-《Spring技术内幕》(二)AOP的实现),接下来继续学习 MVC,其同样也是经典…

朋友问我Java中“::”是什么意思?我汗流浃背了......

目录 一:什么是::? 二:方法引用的几种类型 1.引用静态方法 2.引用特定对象的实例方法 3.引用特定类型的任意对象的实例方法 4.引用构造方法 三:方法引用的适用场景 四:总结 一&#xff1…

数学建模比赛介绍与写作建议

0 小序 本文的写作起因是导师要求我给打算参加相关竞赛的师弟们做一次讲座和汇报。我梳理了一个ppt提纲,并经过整理,因此有了这篇文章。 我打算从数学建模论文写作格式和写作技巧入手,接着介绍数学建模常用的数学模型,最后提出一…

sheng的学习笔记-AI-聚类(Clustering)

ai目录 sheng的学习笔记-AI目录-CSDN博客 基础知识 什么是聚类 在“无监督学习”(unsupervised learning)中,训练样本的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据的内在性质及规律,为进一步的数据分析提供基础。此类学…

【电源专题】为什么带电量计芯片的电池MOS保护要放在高侧

在实际的电量计电池开发中,发现一个很奇怪的现象。传统电池保护IC往往都是将充电保护和放电保护的两个MOS管放在低侧的。如下所示是文章:【电源专题】读一读单节锂电池保护IC规格书 可以看到M1和M2两个MOS管是放在PB-(也就是电池的负端),我们叫做低端。 而BQ28Z610电…

清华大学世界排名:2025QS世界大学排名第20名

近日,国际高等教育研究机构QS Quacquarelli Symonds正式发布了2025QS世界大学排名,其中麻省理工学院连续第13年蝉联榜首,北京大学排名由去年的全球第17上升至全球第14名,清华大学位列2025QS世界大学排名第20名,以下是查…

Linux——/etc/passwd文件含义,grep,cut

/etc/passwd文件含义 作用 - 记录用户账户信息:共分为7段,使用冒号分割 含义 - 文件内容意义:账户名:密码代号x:UID:GID:注释:家目录:SHELL - 第7列/sbin/nologin&#x…

大数据可视化实验(七):Python数据可视化

目录 一、实验目的... 1 二、实验环境... 1 三、实验内容... 1 1)绘制带颜色的柱状图。.. 1 2)绘制堆叠柱状图。.. 3 3)绘制数学函数曲线图。.. 4 4)使用seaborn绘制组合图形。... 5 5)使用Boken绘制多个三角形…

软件框架(Framework)是什么?

可实例化的、部分完成的软件系统或子系统,它为一组系统或子系统定义了统一的体系结构(architecture),并提供了构造系统的基本构造块(building blocks),还为实现具体功能定义了扩展点(extending points)。 框架实现了体系结构级别的复用。 其…

深度学习评价指标:Precision, Recall, F1-score, mIOU, 和 mDice

在深度学习和机器学习中,评价模型性能是至关重要的一环。本文将详细讲解一些常见的评价指标,包括精确率(Precision)、召回率(Recall)、F1-score、平均交并比(mIOU)和平均Dice系数&am…

[leetcode]beautiful-arrangement. 优美的排列

. - 力扣&#xff08;LeetCode&#xff09; class Solution { public:vector<vector<int>> match;vector<int> vis;int num;void backtrack(int index, int n) {if (index n 1) {num;return;}for (auto &x : match[index]) {if (!vis[x]) {vis[x] tru…

【C++】宏定义

严格来说&#xff0c;这个题目起名为C是不合适的&#xff0c;因为宏定义是C语言的遗留特性。CleanCode并不推荐C中使用宏定义。我当时还在公司做过宏定义为什么应该被取代的报告。但是适当使用宏定义对代码是有好处的。坏处也有一些。 无参宏定义 最常见的一种宏定义&#xf…

Python 面试【中级】

欢迎莅临我的博客 &#x1f49d;&#x1f49d;&#x1f49d;&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…

【游戏引擎之路】登神长阶(五)

5月20日-6月4日&#xff1a;攻克2D物理引擎。 6月4日-6月13日&#xff1a;攻克《3D数学基础》。 6月13日-6月20日&#xff1a;攻克《3D图形教程》。 6月21日-6月22日&#xff1a;攻克《Raycasting游戏教程》。 6月23日-6月30日&#xff1a;攻克《Windows游戏编程大师技巧》。 …

厦门新能安科技Ampace校招实习待遇及Verify测评SHL演绎数字推理历年真题题库

一、厦门新能安科技公司介绍 厦门新能安科技有限公司主要业务包括电池制造和销售&#xff0c;电容器及其配套设备制造与销售&#xff0c;电池零配件生产与销售。此外&#xff0c;公司还提供包括技术服务、技术开发、技术咨询、技术交流、技术转让和技术推广在内的全方位服务。公…

安卓开发app-基础的java项目构建补充知识

安卓开发app-基础的java项目构建补充知识&#xff01;上一次分享了基础的项目构建&#xff0c;但是还遗漏了一些基础的内容。今天补充完整。 首先&#xff0c;是关于项目的一些配置文件的信息。 第一个配置文件&#xff1a;{setting.gradle} 国内阿里云仓库地址信息&#xff1…

深度学习基准模型Mamba

深度学习基准模型Mamba Mamba(英文直译&#xff1a;眼镜蛇)具有选择性状态空间的线性时间序列建模&#xff0c;是一种先进的状态空间模型 (SSM)&#xff0c;专为高效处理复杂的数据密集型序列而设计。 Mamba是一种深度学习基准模型&#xff0c;专为处理长序列数据而设计&…

WAIC2024 | 华院计算邀您共赴2024年世界人工智能大会,见证未来科技革新

在智能时代的浪潮汹涌澎湃之际&#xff0c;算法已成为推动社会进步的核心力量。作为中国认知智能技术的领军企业&#xff0c;华院计算在人工智能的广阔天地中&#xff0c;不断探索、创新&#xff0c;致力于将算法的潜力发挥到极致。在过去的时日里&#xff0c;华院计算不断探索…

界面控件Telerik UI for Winforms 2024 Q2新版亮点 - 发布全新的AI相关组件

Telerik UI for WinForms拥有适用Windows Forms的110多个令人惊叹的UI控件&#xff0c;所有的UI for WinForms控件都具有完整的主题支持&#xff0c;可以轻松地帮助开发人员在桌面和平板电脑应用程序提供一致美观的下一代用户体验。 本文将介绍界面组件Telerik UI for Winform…