牛顿-科茨公式
∫
a
b
f
(
x
)
d
x
≈
(
b
−
a
)
∑
k
=
0
n
C
k
(
n
)
f
(
a
+
k
h
)
\int_a^bf(x) \mathrm{d}x\approx(b-a)\sum_{k=0}^nC_k^{(n)}f(a+kh)
∫abf(x)dx≈(b−a)k=0∑nCk(n)f(a+kh)
其中,
C
k
(
n
)
C_k^{(n)}
Ck(n)为科茨系数。
n=1时,系数为1/2, 1/2,又称梯形公式,即
∫
a
b
f
(
x
)
d
x
≈
b
−
a
2
[
f
(
a
)
+
f
(
b
)
]
\int_a^bf(x) \mathrm{d}x\approx\frac{b-a}{2}\Big[f(a)+f(b)\Big]
∫abf(x)dx≈2b−a[f(a)+f(b)]
n=2时,系数为1/6,4/6,1/6,又称辛普森公式,抛物线公式,即
∫
a
b
f
(
x
)
d
x
≈
b
−
a
6
[
f
(
a
)
+
4
f
(
a
+
b
2
)
+
f
(
b
)
]
\int_a^bf\left(x\right)\mathrm{d}x\approx\frac{b-a}{6}\bigg[f(a)+4f\bigg(\frac{a+b}{2}\bigg)+f(b)\bigg]
∫abf(x)dx≈6b−a[f(a)+4f(2a+b)+f(b)]
n=4时,系数为7/90,16/45,2/15,16/45,7/90,即
∫
a
b
f
(
x
)
d
x
≈
b
−
a
90
[
7
f
(
a
)
+
32
f
(
a
+
h
)
+
12
f
(
a
+
2
h
)
+
32
f
(
a
+
3
h
)
+
7
f
(
b
)
]
\int_{a}^{b}f(x) \mathrm{d}x\approx\frac{b-a}{90}\Big[7f(a)+32f(a+h)+12f(a+2h)+32f(a+3h)+7f(b)\Big]
∫abf(x)dx≈90b−a[7f(a)+32f(a+h)+12f(a+2h)+32f(a+3h)+7f(b)]
对梯形公式,其截断误差为:
R
T
(
f
)
=
f
′
′
(
η
)
2
!
∫
a
b
(
x
−
a
)
(
x
−
b
)
d
x
=
−
(
b
−
a
)
3
12
f
′
′
(
η
)
R_{T}(f)=\frac{f''(\eta)}{2!}\int_{a}^{b}(x-a)(x-b) \mathrm{d}x=-\frac{(b-a)^{3}}{12}f''(\eta)
RT(f)=2!f′′(η)∫ab(x−a)(x−b)dx=−12(b−a)3f′′(η)
对辛普森公式,其截断误差为:
R
s
(
f
)
=
−
(
b
−
a
)
5
2880
f
(
4
)
(
η
)
R_s(f)=-\frac{(b-a)^5}{2880}f^{(4)}(\eta)
Rs(f)=−2880(b−a)5f(4)(η)
复化公式
复化梯形公式的截断误差为:
R
T
[
f
]
=
−
b
−
a
12
h
2
f
′
′
(
η
)
,
η
∈
(
a
,
b
)
R_T[f]=-\frac{b-a}{12}h^2f^{\prime\prime}(\eta),\quad\eta\in(a,b)
RT[f]=−12b−ah2f′′(η),η∈(a,b)
复化辛普森公式的截断误差为:
R
s
[
f
]
=
−
b
−
a
2880
h
4
f
(
4
)
(
η
)
,
η
∈
(
a
,
b
)
R_s[f]=-\frac{b-a}{2880}h^4f^{(4)}(\eta) ,\quad\eta\in(a,b)
Rs[f]=−2880b−ah4f(4)(η),η∈(a,b)
区间逐次分半求积法
高斯型求积公式
数值微分公式
一阶导数
f
′
(
x
0
)
=
1
2
h
(
−
3
y
0
+
4
y
1
−
y
2
)
+
h
2
3
f
′
′
′
(
ζ
1
)
,
ζ
1
∈
(
x
0
,
x
2
)
;
f
′
(
x
1
)
=
1
2
h
(
−
y
0
+
y
2
)
−
h
2
6
f
′
′
′
(
ζ
2
)
,
ζ
2
∈
(
x
0
,
x
2
)
;
f
′
(
x
2
)
=
1
2
h
(
y
0
−
4
y
1
+
3
y
2
)
+
h
2
3
f
′
′
′
(
ζ
3
)
,
ζ
3
∈
(
x
0
,
x
2
)
.
f^{\prime}(x_{0})=\frac{1}{2h}(-3y_{0}+4y_{1}-y_{2})+\frac{h^{2}}{3}f^{\prime\prime\prime}(\zeta_{1}) ,\quad\zeta_{1}\in(x_{0},x_{2}) ;\\f^{\prime}(x_{1})=\frac{1}{2h}(-y_{0}+y_{2})-\frac{h^{2}}{6}f^{\prime\prime\prime}(\zeta_{2}) ,\quad\zeta_{2}\in(x_{0},x_{2}) ;\\f^{\prime}(x_{2})=\frac{1}{2h}(y_{0}-4y_{1}+3y_{2})+\frac{h^{2}}{3}f^{\prime\prime\prime}(\zeta_{3}) ,\quad\zeta_{3}\in(x_{0},x_{2}) .
f′(x0)=2h1(−3y0+4y1−y2)+3h2f′′′(ζ1),ζ1∈(x0,x2);f′(x1)=2h1(−y0+y2)−6h2f′′′(ζ2),ζ2∈(x0,x2);f′(x2)=2h1(y0−4y1+3y2)+3h2f′′′(ζ3),ζ3∈(x0,x2).
二阶导数
f
′
′
(
x
0
)
=
1
h
2
(
y
0
−
2
y
1
+
y
2
)
−
h
f
′
′
′
(
ζ
1
)
;
f
′
′
(
x
1
)
=
1
h
2
(
y
0
−
2
y
1
+
y
2
)
−
h
2
12
f
(
4
)
(
ζ
2
)
;
f
′
′
(
x
2
)
=
1
h
2
(
y
0
−
2
y
1
+
y
2
)
+
h
f
′
′
′
(
ζ
3
)
,
ζ
i
∈
(
x
0
,
x
2
)
(
i
=
1
,
2
,
3
)
.
\begin{gathered} f^{\prime\prime}(x_{0}) =\frac{1}{h^{2}}( y_{0}-2y_{1}+y_{2} )-hf^{\prime\prime\prime} ( \zeta_{1} ) ; \\ f^{\prime\prime}(x_{1}) =\frac{1}{h^{2}}( y_{0}-2y_{1}+y_{2} )-\frac{h^{2}}{12}f^{(4)} ( \zeta_{2} ) ; \\ f^{\prime\prime}(x_{2}) =\frac{1}{h^2}( y_0-2y_1+y_2 )+hf^{\prime\prime\prime}( \zeta_3 ) , \\ \zeta_{i}\in(x_{0},x_{2})\quad(i=1,2,3). \end{gathered}
f′′(x0)=h21(y0−2y1+y2)−hf′′′(ζ1);f′′(x1)=h21(y0−2y1+y2)−12h2f(4)(ζ2);f′′(x2)=h21(y0−2y1+y2)+hf′′′(ζ3),ζi∈(x0,x2)(i=1,2,3).