探索人工智能和LLM对未来就业的影响

近年来,人工智能(AI)迅猛发展,引发了人们的兴奋,同时也引发了人们对就业未来的担忧。大型语言模型(LLM)就是最新的例子。这些强大的人工智能子集经过大量文本数据的训练,以理解和生成类人语言。

根据一个 LinkedIn 的报告由于人工智能的兴起,其全球 55% 的会员的工作可能会经历一定程度的变化。

了解人工智能和LLM将如何扰乱就业市场对于企业和员工适应变化并在快速发展的技术环境中保持竞争力至关重要。

本文探讨了人工智能对就业的影响以及劳动力自动化将如何扰乱就业。
在这里插入图片描述

大型语言模型:就业市场颠覆的催化剂

根据高盛(Goldman Sachs)的说法、生成式人工智能和LLM可能会在短期内扰乱 300 亿个工作岗位。他们还预测,由于人工智能融入业务工作流程,50% 的劳动力面临失业风险。

LLM 以前被认为是人类工作者专属领域的任务越来越自动化。例如,LLM接受了先前互动的大量存储库的培训,现在可以回答产品查询,生成准确且信息丰富的答复。

这减少了员工的工作量,并提供更快的 24/7 客户服务。此外,LLM不断发展,远远超越了客户服务并被用于各种应用,例如内容开发、翻译、法律研究、软件开发等。

大型语言模型和生成人工智能:自动化

LLM和 生成式人工智能 正变得越来越普遍,这可能会导致部分自动化和一些工人的潜在失业,同时为其他人创造机会。

1. 重塑日常任务

人工智能和LLM擅长通过定义的规则处理重复性任务,例如数据输入、预约安排和生成基本报告。

这种自动化使人类工人能够专注于更复杂的任务,但引发了人们对工作岗位流失的担忧。随着人工智能和LLM自动化日常任务的能力越来越强,对人力投入的需求减少,从而引发工作岗位流失。然而,需要高度人力监督和投入的工作受到的影响最小。

2.面临自动化风险的行业

具有大量日常任务的部门(例如制造和管理)最容易受到影响 人工智能和LLM自动化。由于LLM能够简化数据输入和生产线调度等操作,因此它们对这些行业的工作构成风险。

根据高盛的报告,人工智能自动化将提高劳动力的效率和生产力,同时也使数以百万计的日常工作和体力工作面临高风险。

3. 低技能工作岗位的潜在流失

人工智能对低技能劳动力的影响预计未来将会增加。​人工智能驱动的自动化的技能偏向性质使其更加 对于技术知识较少的人来说很困难 来增加他们的就业机会。这是因为自动化扩大了高技能工人和低技能工人之间的差距。

低技能工人只能通过高质量的教育、培训和再培训计划来保住工作。他们还可能面临转向使用人工智能技术的更新、高薪、高技能工作的困难。

随着 麦肯锡最新报告 预测低工资工人需要换工作的可能性是普通人的 14 倍。如果不提高技能或过渡到与人工智能兼容的新角色,他们就有可能在快速发展的就业市场中被抛在后面。

4. 人工智能和LLM在简化流程中的作用

由于人工智能和LLM的日益普及,商业格局发生了重大转变。最近 来自沃卡托的报告 揭示了一项令人信服的统计数据:到 28 年,运营团队将 2023% 的流程实现自动化。

人工智能和LLM是游戏规则的改变者,可以降低运营成本,通过自动化简化任务,并提高服务质量。
在这里插入图片描述

人工智能时代工作的未来

虽然人工智能是不可避免的,但只要有足够的资源和足够的培训,员工就可以利用人工智能和LLM来提高日常任务的生产力。

例如,该 国家经济研究局 (NBER) 指出,使用生成式 AI (GPT) 工具的客户支持代理将其工作效率提高了约 14%。这显示了人与机器之间协作的潜力。

虽然人工智能无疑改变了就业市场,但它的整合应该被视为机遇而不是威胁。真正的潜力在于人类直觉、创造力和同理心与人工智能分析能力的结合。

LLM和生成人工智能的训练

虽然 GPT 可以生成文本和图像,但它的后继者,例如 GPT-4o,无缝处理和生成跨文本、音频、图像和视频格式的内容。

这表明新的多模式LLM和人工智能技术正在迅速发展。由于人工智能对未来工作的影响,重新培训对于现代组织和工人的生存都至关重要。一些重要的技能包括:

  • 提示工程: LLM依靠提示来指导他们的输出。学习如何创建清晰简洁的提示将是发挥其真正潜力的关键因素。
  • 数据流畅度: 处理和理解数据的能力至关重要。这包括收集、分析和解释数据,影响您与LLM的互动。
  • 人工智能素养: 有关人工智能的基础知识,包括其功能和局限性,对于与这些强大的工具进行有效的协作和沟通至关重要。
  • 批判性思维和评价: 虽然LLM可能令人印象深刻,但评估其产出也很重要。评估、更新和分析LLM的工作至关重要。

人工智能在工作场所的道德影响

人工智能在工作场所的存在有其优点和缺点,必须仔细考虑。前者当然可以提高生产率并降低成本。然而,如果采取不利的做法也会产生不利影响。

以下是一些需要成为更大叙述的一部分的道德考虑因素:

  • 算法偏差和公平性: 人工智能算法有可能强化其训练数据中发现的偏见,这可能会导致不公平的招聘决策。

  • 员工隐私: 人工智能依赖大量员工数据,引发了人们对可能滥用这些信息的担忧,这可能会导致失业。

  • 不等式: 人工智能在工作流程中的使用增加带来了不平等或难以访问等挑战。技能提升和再培训计划等举措可以帮助减少人工智能对整个组织员工的负面影响。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/757813.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【贡献法】2262. 字符串的总引力

本文涉及知识点 贡献法 LeetCode2262. 字符串的总引力 字符串的 引力 定义为:字符串中 不同 字符的数量。 例如,“abbca” 的引力为 3 ,因为其中有 3 个不同字符 ‘a’、‘b’ 和 ‘c’ 。 给你一个字符串 s ,返回 其所有子字符…

【Arduino】实验使用ESP32控制可编程继电器制作跑马灯(图文)

今天小飞鱼实验使用ESP控制继电器,为了更好的掌握继电器的使用方法这里实验做了一个跑马灯的效果。 这里用到的可编程继电器,起始原理并不复杂,同样需要ESP32控制针脚输出高电平或低电平给到继电器,继电器使用这个信号控制一个电…

Linux 网络:网卡 promiscuous 模式疑云

文章目录 1. 前言2. 问题场景3. 问题定位和分析4. 参考资料 1. 前言 限于作者能力水平,本文可能存在谬误,因此而给读者带来的损失,作者不做任何承诺。 2. 问题场景 调试 Marvell 88E6320 时,发现 eth0 出人意料的进入了 promis…

【吊打面试官系列-MyBatis面试题】MyBatis 与 Hibernate 有哪些不同?

大家好,我是锋哥。今天分享关于 【MyBatis 与 Hibernate 有哪些不同?】面试题,希望对大家有帮助; MyBatis 与 Hibernate 有哪些不同? 1、Mybatis 和 hibernate 不同,它不完全是一个 ORM 框架,因…

grpc学习golang版( 四、多服务示例 )

系列文章目录 第一章 grpc基本概念与安装 第二章 grpc入门示例 第三章 proto文件数据类型 第四章 多服务示例 第五章 多proto文件示例 第六章 服务器流式传输 第七章 客户端流式传输 第八章 双向流示例 文章目录 一、前言二、定义proto文件三、编写server服务端四、编写Client客…

盘点全球Top10大云计算平台最热门技能证书

小李哥花了一年半时间终于考下全球10大云的77张认证,今天盘点下各个云的热门证书,希望能帮到非CS专业转IT和刚刚入行云计算的小伙伴。 排名取自23年Yahoo云计算市场份额排名报告,我会从云平台、证书价格、证书热门程度做推荐。 1️⃣亚马逊云…

MathType7.6永久破解激活码注册码 包含安装包下载

MathType是一款强大的数学公式编辑器,它能够帮助用户轻松编辑各种复杂的数学公式和符号。无论是学生、教师还是科研人员,MathType都能提供专业、精确的数学公式编辑服务。 在学习和工作中,我们常常会遇到需要编写数学公式的情况。然而&#x…

Python 算法交易实验74 QTV200第二步(改): 数据清洗并写入Mongo

说明 之前第二步是打算进入Clickhouse的,实测下来有一些bug 可以看到有一些分钟数据重复了。简单分析原因: 1 起异步任务时,还是会有两个任务重复的问题,这个在同步情况下是不会出现的2 数据库没有upsert模式。clickhouse是最近…

除了重塑千行百业,生成式AI还能改善运动健康

飞速发展的生成式AI与大模型技术,不但正在重塑千行百业,而且还能有效改善人们的运动健康。 生成式AI技术应用的挑战 随着生活品质的不断提升,人们对于健康问题也越来越重视。作为一家以“AI重塑健康与美”为使命的AI数字健康解决方案提供商&a…

langchain学习总结

大模型开发遇到的问题及langchain框架学习 背景: 1、微场景间跳转问题,无法实现微场景随意穿插 2、大模型幻读(推荐不存在的产品、自己发挥) 3、知识库检索,语义匹配效果较差,匹配出的结果和客户表述的…

解决指南:如何应对错误代码 0x80070643

在使用Windows操作系统过程中,用户可能会遭遇各种错误代码,其中错误 0x80070643是比较常见的一种。这个错误通常在安装更新或某些软件时发生,尤其是在微软的Windows Defender或其他Microsoft安全产品以及.NET Framework更新过程中更为常见。本…

动画重定向——当给一个人物模型用别人物的动画时,会遇到人物与动画不匹配问题,怎么解决呢?

每日一句:实践出真知,试错方确信 目录 最开始我想的原因! 分析一下动画相关参数 Animator组件参数详解: 人物模型的导入设置参数: Skinned Mesh Renderer组件详解: Skinned Mesh Renderer工作原理 设置Skinned …

【吴恩达深度学习笔记系列】Logistic Regression 【理论】

Binary Classification: Logistic Regression: y ^ σ ( w T x b ) \hat{y}\sigma{(w^T xb)} y^​σ(wTxb) using sigmoid function σ 1 1 e − z \sigma \frac{1}{1e^{-z}} σ1e−z1​. 【torch.sigmoid(x)】 Sigmoid ( x ) 1 1 e − x \text{Sigmoid}(x)\frac{1}{…

nginx优势以及应用场景,编译安装和nginx

一. Nginx是什么? 1. Nginx概述 高性能、轻量级Web服务软件系统资源消耗低对HTTP并发连接的处理能力高单台物理服务器可支持30,000~50,000个并发请求Nginx(发音同 “engine x”)是一个高性能的反向代理和Web服务器软件&#xff0c…

【05】从0到1构建AI生成思维导图应用 -- 前端交互实现

【05】从0到1构建AI生成思维导图应用 – 前端交互实现 大家好!最近自己做了一个完全免费的AI生成思维导图的网站,支持下载,编辑和对接微信公众号,可以在这里体验:https://lt2mind.zeabur.app/ 上一章:http…

【C++】初识C++(一)

一.什么是C C语言是结构化和模块化的语言,适合处理较小规模的程序。对于复杂的问题,规模较大的程序,需要高度 的抽象和建模时,C语言则不合适。为了解决软件危机, 20世纪80年代, 计算机界提出了OOP(object o…

Mathematica训练课(46)-- 一些常用的画图函数

在前面的课程中,我们已经梳理了Plot的画图用法,今天就详细梳理一下其他的画图函数用法; 1. 画一条直线 2. Circle(圆) 3. Disk(圆盘) 4. 画出一个矩形 5. 箭头

itext生成pdf文件demo示例

需求 在PDF文件中植入一些信息(pdf模版) 制作模版 可以看到下面红色箭头标注位置,这都是我们需要动态写入数据的表单域,可以使用wps等工具来制作 点击编辑表单,可以给对应空间添加表单域,表单域名称是ke…

ic基础|功耗篇04:门级低功耗技术

大家好,我是数字小熊饼干,一个练习时长两年半的IC打工人。我在两年前通过自学跨行社招加入了IC行业。现在我打算将这两年的工作经验和当初面试时最常问的一些问题进行总结,并通过汇总成文章的形式进行输出,相信无论你是在职的还是…

UE5材质之HLSL:深度

UE4/5的Custom节点:在VScode使用HLSL(新手入门用)_vscode写hlsl-CSDN博客 效果: 材质节点: 自定义节点代码: float3 rayStepViewDir*-1; float4 inputTexTexture2DSample(TexObject,TexObjectSampler,uv)…