大模型微调实战之基于星火大模型的群聊对话分角色要素提取挑战赛:Task01:跑通Baseline

目录

  • 0 背景
  • 1 环境配置
    • 1.1 下载包
    • 1.2 配置密钥
    • 1.3 测试模型
  • 2 解决问题
    • 2.1 获取数据
    • 2.2 设计Prompt
    • 2.2 设计处理函数
    • 2.3 开始提取
  • 附全流程代码

0 背景

Datawhale AI夏令营第二期开始啦,去年有幸参与过第一期,收获很多,这次也立马参与了第二期,这一期主要是关于大模型微调实战的,之前一直想接触大模型,但是忙于毕业一直没有行动,抓住这次机会行动起来!

在当今数字化时代,企业积累了丰富的对话数据,这些数据不仅是客户与企业之间交流的记录,更是隐藏着宝贵信息的宝库。在这个背景下,群聊对话分角色要素提取成为了企业营销和服务的一项重要策略。
群聊对话分角色要素提取的理念是基于企业对话数据的深度分析和挖掘。通过对群聊对话数据进行分析,企业可以更好地理解客户的需求、兴趣和行为模式,从而精准地把握客户的需求和心理,提供更加个性化和优质的服务。这不仅有助于企业更好地满足客户的需求,提升客户满意度,还可以为企业带来更多的商业价值和竞争优势。
群聊对话分角色要素提取的研究,将企业对话数据转化为可用的信息和智能的洞察,为企业营销和服务提供了新的思路和方法。通过挖掘对话数据中隐藏的客户行为特征和趋势,企业可以更加精准地进行客户定位、推广营销和产品服务,实现营销效果的最大化和客户价值的最大化。这将为企业带来更广阔的发展空间和更持续的竞争优势。

相关链接:
基于星火大模型的群聊对话分角色要素提取挑战赛
零基础入门大模型技术竞赛-速通学习手册

1 环境配置

1.1 下载包

本项目是基于windows环境,pycharm编译器,星火认知大模型Spark3.5 Max,首先安装软件包

pip install --upgrade spark_ai_python  # 这里相较于baseline版本去掉-q

国内使用:

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple spark_ai_python

如果清华源版本不可用,请使用一下命令升级到最新版本:

pip install -i  https://repo.model.xfyun.cn/api/packages/administrator/pypi/simple  spark_ai_python --upgrade

或者,开那个解决。(最好用)

我在安装的时候出现了报错,经分析是网络问题,开那个解决了。
在这里插入图片描述

注:项目仅支持 Python3.8+

1.2 配置密钥

这里密钥从讯飞开发者平台申请,Datawhale还帮我们申请了200w的token,随便花!

from sparkai.llm.llm import ChatSparkLLM, ChunkPrintHandler
from sparkai.core.messages import ChatMessage
import json


#星火认知大模型Spark3.5 Max的URL值,其他版本大模型URL值请前往文档(https://www.xfyun.cn/doc/spark/Web.html)查看
SPARKAI_URL = 'wss://spark-api.xf-yun.com/v3.5/chat'
#星火认知大模型调用秘钥信息,请前往讯飞开放平台控制台(https://console.xfyun.cn/services/bm35)查看
SPARKAI_APP_ID = ''  # 替换成自己的
SPARKAI_API_SECRET = ''  # 替换成自己的
SPARKAI_API_KEY = ''  # 替换成自己的
#星火认知大模型Spark3.5 Max的domain值,其他版本大模型domain值请前往文档(https://www.xfyun.cn/doc/spark/Web.html)查看
SPARKAI_DOMAIN = 'generalv3.5'

1.3 测试模型

baseline提供了一个函数用于测试环境以及API是否配置合理,直接运行即可

def get_completions(text):
    messages = [ChatMessage(
        role="user",
        content=text
    )]
    spark = ChatSparkLLM(
        spark_api_url=SPARKAI_URL,
        spark_app_id=SPARKAI_APP_ID,
        spark_api_key=SPARKAI_API_KEY,
        spark_api_secret=SPARKAI_API_SECRET,
        spark_llm_domain=SPARKAI_DOMAIN,
        streaming=False,
    )
    handler = ChunkPrintHandler()
    a = spark.generate([messages], callbacks=[handler])
    return a.generations[0][0].text

# 测试模型配置是否正确
text = "你是谁?"
print(get_completions(text))  # 注意这里要添加一个print函数

注意:相较于baseline,最后一行添加了print函数,因为百度在线平台会直接打印以及输出图片。

  • 直接调用了ChatMessage()用于获取用户输入的字符串,其中role参数:system用于设置对话背景,user表示是用户的问题,assistant表示AI的回复。content是用户和AI的对话内容。
  • ChatSparkLLM()构造了星火模型,其中streaming参数指的是采用一次性返回结果(非流式)还是采用流式返回结果。这里简单测试,采用False

详细的SDK说明可以在星火的Github查看。

2 解决问题

2.1 获取数据

def read_json(json_file_path):
    """读取json文件"""
    with open(json_file_path, 'r', encoding='utf-8') as f:
        data = json.load(f)
    return data

def write_json(json_file_path, data):
    """写入json文件"""
    with open(json_file_path, 'w', encoding='utf-8') as f:
        json.dump(data, f, ensure_ascii=False, indent=4)

# 读取数据
train_data = read_json("dataset/train.json")
test_data = read_json("dataset/test_data.json")

这里就是很普通的实现了Json文件的读取函数和写入函数。注意win环境下在读取和写入的时候要添加, encoding='utf-8',否则会读取失败。在许多中文Windows系统中,默认编码是gbk,而不是utf-8。

2.2 设计Prompt

baseline提供的Prompt:

# prompt 设计
PROMPT_EXTRACT = """
你将获得一段群聊对话记录。你的任务是根据给定的表单格式从对话记录中提取结构化信息。在提取信息时,请确保它与类型信息完全匹配,不要添加任何没有出现在下面模式中的属性。

表单格式如下:
info: Array<Dict(
    "基本信息-姓名": string | "",  // 客户的姓名。
    "基本信息-手机号码": string | "",  // 客户的手机号码。
    "基本信息-邮箱": string | "",  // 客户的电子邮箱地址。
    "基本信息-地区": string | "",  // 客户所在的地区或城市。
    "基本信息-详细地址": string | "",  // 客户的详细地址。
    "基本信息-性别": string | "",  // 客户的性别。
    "基本信息-年龄": string | "",  // 客户的年龄。
    "基本信息-生日": string | "",  // 客户的生日。
    "咨询类型": string[] | [],  // 客户的咨询类型,如询价、答疑等。
    "意向产品": string[] | [],  // 客户感兴趣的产品。
    "购买异议点": string[] | [],  // 客户在购买过程中提出的异议或问题。
    "客户预算-预算是否充足": string | "",  // 客户的预算是否充足。示例:充足, 不充足
    "客户预算-总体预算金额": string | "",  // 客户的总体预算金额。
    "客户预算-预算明细": string | "",  // 客户预算的具体明细。
    "竞品信息": string | "",  // 竞争对手的信息。
    "客户是否有意向": string | "",  // 客户是否有购买意向。示例:有意向, 无意向
    "客户是否有卡点": string | "",  // 客户在购买过程中是否遇到阻碍或卡点。示例:有卡点, 无卡点
    "客户购买阶段": string | "",  // 客户当前的购买阶段,如合同中、方案交流等。
    "下一步跟进计划-参与人": string[] | [],  // 下一步跟进计划中涉及的人员(客服人员)。
    "下一步跟进计划-时间点": string | "",  // 下一步跟进的时间点。
    "下一步跟进计划-具体事项": string | ""  // 下一步需要进行的具体事项。
)>

请分析以下群聊对话记录,并根据上述格式提取信息:

**对话记录:**
'''
{content}
'''

请将提取的信息以JSON格式输出。
不要添加任何澄清信息。
输出必须遵循上面的模式。
不要添加任何没有出现在模式中的附加字段。
不要随意删除字段。

**输出:**
'''
[{{
    "基本信息-姓名": "姓名",
    "基本信息-手机号码": "手机号码",
    "基本信息-邮箱": "邮箱",
    "基本信息-地区": "地区",
    "基本信息-详细地址": "详细地址",
    "基本信息-性别": "性别",
    "基本信息-年龄": "年龄",
    "基本信息-生日": "生日",
    "咨询类型": ["咨询类型"],
    "意向产品": ["意向产品"],
    "购买异议点": ["购买异议点"],
    "客户预算-预算是否充足": "充足或不充足",
    "客户预算-总体预算金额": "总体预算金额",
    "客户预算-预算明细": "预算明细",
    "竞品信息": "竞品信息",
    "客户是否有意向": "有意向或无意向",
    "客户是否有卡点": "有卡点或无卡点",
    "客户购买阶段": "购买阶段",
    "下一步跟进计划-参与人": ["跟进计划参与人"],
    "下一步跟进计划-时间点": "跟进计划时间点",
    "下一步跟进计划-具体事项": "跟进计划具体事项"
}}, ...]
'''
"""

2.2 设计处理函数

import json

class JsonFormatError(Exception):
    def __init__(self, message):
        self.message = message
        super().__init__(self.message)

def convert_all_json_in_text_to_dict(text):
    """提取LLM输出文本中的json字符串"""
    dicts, stack = [], []
    for i in range(len(text)):
        if text[i] == '{':
            stack.append(i)
        elif text[i] == '}':
            begin = stack.pop()
            if not stack:
                dicts.append(json.loads(text[begin:i+1]))
    return dicts

# 查看对话标签
def print_json_format(data):
    """格式化输出json格式"""
    print(json.dumps(data, indent=4, ensure_ascii=False))



def check_and_complete_json_format(data):
    required_keys = {
        "基本信息-姓名": str,
        "基本信息-手机号码": str,
        "基本信息-邮箱": str,
        "基本信息-地区": str,
        "基本信息-详细地址": str,
        "基本信息-性别": str,
        "基本信息-年龄": str,
        "基本信息-生日": str,
        "咨询类型": list,
        "意向产品": list,
        "购买异议点": list,
        "客户预算-预算是否充足": str,
        "客户预算-总体预算金额": str,
        "客户预算-预算明细": str,
        "竞品信息": str,
        "客户是否有意向": str,
        "客户是否有卡点": str,
        "客户购买阶段": str,
        "下一步跟进计划-参与人": list,
        "下一步跟进计划-时间点": str,
        "下一步跟进计划-具体事项": str
    }

    if not isinstance(data, list):
        raise JsonFormatError("Data is not a list")

    for item in data:
        if not isinstance(item, dict):
            raise JsonFormatError("Item is not a dictionary")
        for key, value_type in required_keys.items():
            if key not in item:
                item[key] = [] if value_type == list else ""
            if not isinstance(item[key], value_type):
                raise JsonFormatError(f"Key '{key}' is not of type {value_type.__name__}")
            if value_type == list and not all(isinstance(i, str) for i in item[key]):
                raise JsonFormatError(f"Key '{key}' does not contain all strings in the list")

    return data
  • JsonFormatError 类: 这是一个自定义异常类,继承自Python内置的Exception类。当遇到JSON格式错误时,这个异常会被抛出。它接收一个消息参数,并将其存储在message属性中。
  • convert_all_json_in_text_to_dict 函数: 这个函数接受一个字符串参数text,然后扫描这个字符串,寻找JSON对象,并将它们转换为Python字典。它使用一个栈来处理嵌套的JSON对象,并只在找到匹配的括号对时才尝试解析JSON。
  • print_json_format 函数: 这个函数接受一个Python字典data作为参数,并将其转换为格式化的JSON字符串,然后打印出来。它使用json.dumps函数来实现这个转换,其中indent=4用于美化输出,ensure_ascii=False允许打印非ASCII字符。
  • check_and_complete_json_format 函数: 这个函数用于检查一个列表中的每个字典是否包含一组特定的键,并且这些键对应的值的类型也是正确的。

2.3 开始提取

from tqdm import tqdm

retry_count = 5 # 重试次数
result = []
error_data = []

for index, data in tqdm(enumerate(test_data)):
    index += 1
    is_success = False
    for i in range(retry_count):
        try:
            res = get_completions(PROMPT_EXTRACT.format(content=data["chat_text"]))
            infos = convert_all_json_in_text_to_dict(res)
            infos = check_and_complete_json_format(infos)
            result.append({
                "infos": infos,
                "index": index
            })
            is_success = True
            break
        except Exception as e:
            print("index:", index, ", error:", e)
            continue
    if not is_success:
        data["index"] = index
        error_data.append(data)
write_json("output.json", result)

附全流程代码

配置好虚拟环境,下载两个json文件到dataset文件夹下即可直接使用。

"""
==========================================
@author: Seaton
@Time: 2024/6/29:下午7:19
@IDE: PyCharm
@Summary:Task01:baseline实现
==========================================
"""
from sparkai.llm.llm import ChatSparkLLM, ChunkPrintHandler
from sparkai.core.messages import ChatMessage
import json
from tqdm import tqdm


# 星火认知大模型Spark3.5 Max的URL值,其他版本大模型URL值请前往文档(https://www.xfyun.cn/doc/spark/Web.html)查看
SPARKAI_URL = 'wss://spark-api.xf-yun.com/v3.5/chat'
# 星火认知大模型调用秘钥信息,请前往讯飞开放平台控制台(https://console.xfyun.cn/services/bm35)查看
SPARKAI_APP_ID = ''
SPARKAI_API_SECRET = ''
SPARKAI_API_KEY = ''
# 星火认知大模型Spark3.5 Max的domain值,其他版本大模型domain值请前往文档(https://www.xfyun.cn/doc/spark/Web.html)查看
SPARKAI_DOMAIN = 'generalv3.5'


def get_completions(text):
    messages = [ChatMessage(
        role="user",
        content=text
    )]
    spark = ChatSparkLLM(
        spark_api_url=SPARKAI_URL,
        spark_app_id=SPARKAI_APP_ID,
        spark_api_key=SPARKAI_API_KEY,
        spark_api_secret=SPARKAI_API_SECRET,
        spark_llm_domain=SPARKAI_DOMAIN,
        streaming=False,
    )
    handler = ChunkPrintHandler()
    a = spark.generate([messages], callbacks=[handler])
    return a.generations[0][0].text


# # 测试模型配置是否正确
# text = "你是谁?"
# print(get_completions(text))  # 注意这里要添加一个print函数


def read_json(json_file_path):
    """读取json文件"""
    with open(json_file_path, 'r', encoding='utf-8') as f:
        data = json.load(f)
    return data


def write_json(json_file_path, data):
    """写入json文件"""
    with open(json_file_path, 'w', encoding='utf-8') as f:
        json.dump(data, f, ensure_ascii=False, indent=4)


# 读取数据
train_data = read_json("dataset/train.json")
test_data = read_json("dataset/test_data.json")


# prompt 设计
PROMPT_EXTRACT = """
你将获得一段群聊对话记录。你的任务是根据给定的表单格式从对话记录中提取结构化信息。在提取信息时,请确保它与类型信息完全匹配,不要添加任何没有出现在下面模式中的属性。

表单格式如下:
info: Array<Dict(
    "基本信息-姓名": string | "",  // 客户的姓名。
    "基本信息-手机号码": string | "",  // 客户的手机号码。
    "基本信息-邮箱": string | "",  // 客户的电子邮箱地址。
    "基本信息-地区": string | "",  // 客户所在的地区或城市。
    "基本信息-详细地址": string | "",  // 客户的详细地址。
    "基本信息-性别": string | "",  // 客户的性别。
    "基本信息-年龄": string | "",  // 客户的年龄。
    "基本信息-生日": string | "",  // 客户的生日。
    "咨询类型": string[] | [],  // 客户的咨询类型,如询价、答疑等。
    "意向产品": string[] | [],  // 客户感兴趣的产品。
    "购买异议点": string[] | [],  // 客户在购买过程中提出的异议或问题。
    "客户预算-预算是否充足": string | "",  // 客户的预算是否充足。示例:充足, 不充足
    "客户预算-总体预算金额": string | "",  // 客户的总体预算金额。
    "客户预算-预算明细": string | "",  // 客户预算的具体明细。
    "竞品信息": string | "",  // 竞争对手的信息。
    "客户是否有意向": string | "",  // 客户是否有购买意向。示例:有意向, 无意向
    "客户是否有卡点": string | "",  // 客户在购买过程中是否遇到阻碍或卡点。示例:有卡点, 无卡点
    "客户购买阶段": string | "",  // 客户当前的购买阶段,如合同中、方案交流等。
    "下一步跟进计划-参与人": string[] | [],  // 下一步跟进计划中涉及的人员(客服人员)。
    "下一步跟进计划-时间点": string | "",  // 下一步跟进的时间点。
    "下一步跟进计划-具体事项": string | ""  // 下一步需要进行的具体事项。
)>

请分析以下群聊对话记录,并根据上述格式提取信息:

**对话记录:**
'''
{content}
'''

请将提取的信息以JSON格式输出。
不要添加任何澄清信息。
输出必须遵循上面的模式。
不要添加任何没有出现在模式中的附加字段。
不要随意删除字段。

**输出:**
'''
[{{
    "基本信息-姓名": "姓名",
    "基本信息-手机号码": "手机号码",
    "基本信息-邮箱": "邮箱",
    "基本信息-地区": "地区",
    "基本信息-详细地址": "详细地址",
    "基本信息-性别": "性别",
    "基本信息-年龄": "年龄",
    "基本信息-生日": "生日",
    "咨询类型": ["咨询类型"],
    "意向产品": ["意向产品"],
    "购买异议点": ["购买异议点"],
    "客户预算-预算是否充足": "充足或不充足",
    "客户预算-总体预算金额": "总体预算金额",
    "客户预算-预算明细": "预算明细",
    "竞品信息": "竞品信息",
    "客户是否有意向": "有意向或无意向",
    "客户是否有卡点": "有卡点或无卡点",
    "客户购买阶段": "购买阶段",
    "下一步跟进计划-参与人": ["跟进计划参与人"],
    "下一步跟进计划-时间点": "跟进计划时间点",
    "下一步跟进计划-具体事项": "跟进计划具体事项"
}}, ...]
'''
"""


class JsonFormatError(Exception):
    def __init__(self, message):
        self.message = message
        super().__init__(self.message)


def convert_all_json_in_text_to_dict(text):
    """提取LLM输出文本中的json字符串"""
    dicts, stack = [], []
    for i in range(len(text)):
        if text[i] == '{':
            stack.append(i)
        elif text[i] == '}':
            begin = stack.pop()
            if not stack:
                dicts.append(json.loads(text[begin:i+1]))
    return dicts


# 查看对话标签
def print_json_format(data):
    """格式化输出json格式"""
    print(json.dumps(data, indent=4, ensure_ascii=False))


def check_and_complete_json_format(data):
    required_keys = {
        "基本信息-姓名": str,
        "基本信息-手机号码": str,
        "基本信息-邮箱": str,
        "基本信息-地区": str,
        "基本信息-详细地址": str,
        "基本信息-性别": str,
        "基本信息-年龄": str,
        "基本信息-生日": str,
        "咨询类型": list,
        "意向产品": list,
        "购买异议点": list,
        "客户预算-预算是否充足": str,
        "客户预算-总体预算金额": str,
        "客户预算-预算明细": str,
        "竞品信息": str,
        "客户是否有意向": str,
        "客户是否有卡点": str,
        "客户购买阶段": str,
        "下一步跟进计划-参与人": list,
        "下一步跟进计划-时间点": str,
        "下一步跟进计划-具体事项": str
    }

    if not isinstance(data, list):
        raise JsonFormatError("Data is not a list")

    for item in data:
        if not isinstance(item, dict):
            raise JsonFormatError("Item is not a dictionary")
        for key, value_type in required_keys.items():
            if key not in item:
                item[key] = [] if value_type == list else ""
            if not isinstance(item[key], value_type):
                raise JsonFormatError(f"Key '{key}' is not of type {value_type.__name__}")
            if value_type == list and not all(isinstance(i, str) for i in item[key]):
                raise JsonFormatError(f"Key '{key}' does not contain all strings in the list")

    return data


retry_count = 5  # 重试次数
result = []
error_data = []

for index, data in tqdm(enumerate(test_data)):
    index += 1
    is_success = False
    for i in range(retry_count):
        try:
            res = get_completions(PROMPT_EXTRACT.format(content=data["chat_text"]))
            infos = convert_all_json_in_text_to_dict(res)
            infos = check_and_complete_json_format(infos)
            result.append({
                "infos": infos,
                "index": index
            })
            is_success = True
            break
        except Exception as e:
            print("index:", index, ", error:", e)
            continue
    if not is_success:
        data["index"] = index
        error_data.append(data)

write_json("output.json", result)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/757398.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

昇思MindSpore学习笔记5--数据变换Transforms

摘要&#xff1a; 昇思MindSpore的数据变换&#xff0c;包括通用变换Common Transforms、图像变换Vision Transforms、标准化Normalize、文本变换Text Transforms、匿名函数变换Lambda Transforms。 一、数据变换Transforms概念 原始数据需预处理后才能送入神经网络进行训练…

【网络】计算机网络-基本知识

目录 概念计算机网络功能计算机网络的组成计算机网络的分类 网络地址网络地址的分类 计算机网络相关性能指标速率带宽吞吐量时延时延的种类&#xff1a; 时延带宽积往返时延RTT利用率 概念 计算机网络是指将多台计算机通过通信设备连接起来&#xff0c;实现数据和资源的共享。…

spring mvc实现一个自定义Formatter请求参数格式化

使用场景 在Spring Boot应用中&#xff0c;Formatter接口用于自定义数据的格式化&#xff0c;比如将日期对象格式化为字符串&#xff0c;或者将字符串解析回日期对象。这在处理HTTP请求和响应时特别有用&#xff0c;尤其是在展示给用户或从用户接收特定格式的数据时。下面通过…

Arthas快速入门

简介 Arthas 是一款线上监控诊断产品&#xff0c;通过全局视角实时查看应用 load、内存、gc、线程的状态信息&#xff0c;并能在不修改应用代码的情况下&#xff0c;对业务问题进行诊断&#xff0c;包括查看方法调用的出入参、异常&#xff0c;监测方法执行耗时&#xff0c;类…

3.3V到5V的负电源产生电路(电荷泵电压反相器)SGM3204输出电流0.2A封装SOT23-6

前言 SGM3204 非稳压 200mA 电荷泵负电源产生电路&#xff0c;LCEDA原理图请访问资源 SGM3204电荷泵负电源产生电路 SGM3204电荷泵负电源产生电路 一般描述 SGM3204从 1.4V 至 5.5V 的输入电压范围产生非稳压负输出电压。 该器件通常由 5V 或 3.3V 的预稳压电源轨供电。由于…

ElementUI的基本搭建

目录 1&#xff0c;首先在控制终端中输入下面代码&#xff1a;npm i element-ui -S 安装element UI 2&#xff0c;构架登录页面&#xff0c;login.vue​编辑 3&#xff0c;在官网获取对应所需的代码直接复制粘贴到对应位置 4&#xff0c;在继续完善&#xff0c;从官网添加…

OverTheWire Bandit 靶场通关解析(中)

介绍 OverTheWire Bandit 是一个针对初学者设计的网络安全挑战平台&#xff0c;旨在帮助用户掌握基本的命令行操作和网络安全技能。Bandit 游戏包含一系列的关卡&#xff0c;每个关卡都需要解决特定的任务来获取进入下一关的凭证。通过逐步挑战更复杂的问题&#xff0c;用户可…

14-7 为什么你的梦想职业可能会扼杀你的梦想

照片由Johnny Cohen在Unsplash拍摄 “做好工作的唯一方法就是热爱你所做的事情。如果你还没有找到&#xff0c;那就继续寻找。不要安于现状。”——史蒂夫乔布斯 等一下&#xff0c;什么&#xff1f; 这不是一篇关于无聊工作的文章吗&#xff1f;我为什么要用一句完全违背前提…

windows@文件高级共享设置@网络发现功能@从资源管理器网络中访问远程桌面

文章目录 高级共享设置常用选项其他选项操作界面说明 网络类型检查和设置(专用网络和公用网络)&#x1f47a;Note 高级共享设置和防火墙&#x1f47a;命令行方式使用图形界面方式配置 网络发现网络发现功能的详细介绍网络发现的作用&#x1f47a;网络发现的工作原理启用和配置网…

Vulnhub-AdmX

主机发现 靶机 &#xff1a; 192.168.145.131131 这台主机 存活 端口扫描 nmap -sV -O -p 1-65535 192.168.145.131 存在 80 端口 &#xff0c;这里连ssh 端口都没了 80 端口存在 Apache httpd 2.4.1 存在 Apache 默认页面 像这种页面 &#xff0c;没有什么具体的价值 扫描一…

Linux的fwrite函数

函数原型: 向文件fp中写入writeBuff里面的内容 int fwrite(void*buffer&#xff0c;intsize&#xff0c;intcount&#xff0c;FILE*fp) /* * description : 对已打开的流进行写入数据块 * param ‐ ptr &#xff1a;指向 数据块的指针 * param ‐ size &#xff1a;指定…

Webpack: 开发 PWA、Node、Electron 应用

概述 毋庸置疑&#xff0c;对前端开发者而言&#xff0c;当下正是一个日升月恒的美好时代&#xff01;在久远的过去&#xff0c;Web 页面的开发技术链条非常原始而粗糙&#xff0c;那时候的 JavaScript 更多用来点缀 Web 页面交互而不是用来构建一个完整的应用。直到 2009年5月…

Transformer教程之序列到序列模型(Seq2Seq)

在自然语言处理&#xff08;NLP&#xff09;的领域中&#xff0c;Transformer模型无疑是近年来最具革命性的方法之一。它的出现不仅大大提高了机器翻译、文本生成等任务的精度&#xff0c;还推动了整个深度学习研究的进步。本文将详细介绍Transformer模型中的序列到序列模型&am…

Redisson(分布式锁、限流)

注意Redisson是基于Redis的&#xff0c;所以必须先引入Redis配置&#xff08;参考SpringBoot集成Redis文章&#xff09; 1. 集成Redisson 引入依赖 <!-- 二选一,区别是第一个自动配置&#xff0c;第二个还需要手动配置也就是第二步自定义配置&#xff0c;注意版本号&…

Java对应C++ STL的用法

sort&#xff1a; 1&#xff1a;java.util.Arrays中的静态方法Arrays.sort()方法&#xff0c;针对基本数据类型和引用对象类型的数组元素排序 2&#xff1a;java.util.Collections中的静态方法的Collections.sort()方法&#xff0c;针对集合框架中的动态数组&#xff0c;链表&…

【mysql的行记录格式】

记录头信息 除了变长字段长度列表、NULL值列表之外&#xff0c;还有一个用于描述记录的记录头信息&#xff0c;它是由固定的5个字节组成。5个字节也就是40个二进制位&#xff0c;不同的位代表不同的意思&#xff0c;如图&#xff1a; 记录的真实数据 对于record_format_demo表来…

linux中的各种指令

按文件的大小进行查找 find / usr -size 100M 在home路径下创建txt文件 touch test.txt 查看test.txt文件中的内容&#xff1a; cat test.txt通过指令pwd可以查看当前所处路径。 切换超级用户的指令&#xff1a; su - root 离开时可以使用指令&#xff1a;exit grep指…

.net 项目中配置 Swagger

一、前言 二、Swagger 三、.net 项目中添加Swagger 1、准备工作 &#xff08;1&#xff09;.net项目 &#xff08;2&#xff09;SwaggerController &#xff08;3&#xff09;XML文档注释 2、安装Swagger包 3、 添加配置swagger中间件 &#xff08;1&#xff09;添加S…

深入理解Unix/Linux中sync、fsync、fdatasync和sync_file_range系统调用以及他们的区别

前言 在linux内核中都有缓冲区或者页面高速缓存&#xff0c;大多数磁盘IO都是通过缓冲写的。当你想将数据write进文件时&#xff0c;内核通常会将该数据复制到其中一个缓冲区中&#xff0c;如果该缓冲没被写满的话&#xff0c;内核就不会把它放入到输出队列中。当这个缓冲区被…

5000字深入讲解:企业数字化转型优先从哪个板块开始?

很多企业都知道数字化转型重要&#xff0c;但不知道应该怎样入手&#xff0c;分哪些阶段。以下引用国内领先数字化服务商 织信Informat 的数字化转型方法论材料&#xff0c;且看看他们是如何看待数字化转型的&#xff1f;数字化转型应该从哪先开始&#xff1f;如何做&#xff1…