Python25 Numpy基础

图片

1.什么是Numpy

NumPy(Numerical Python 的简称)是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。NumPy 的前身是 Numeric,这是一个由 Jim Hugunin 等人开发的一个用于数值计算的扩展程序库。由于 Numeric 的一些问题,Jim Hugunin 创建了另一个库叫 SciPy,用于弥补 Numeric 的一些不足。之后,NumPy 开发人员将 Numeric 和 SciPy 整合成一个新的库——NumPy,这使得 NumPy 在功能上更加完善。

NumPy 的主要特点包括:

  1. 强大的 N 维数组对象:NumPy 使用一个 n 维数组对象 ndarray,可以方便地存储和操作大型多维数组和矩阵,并提供大量的数学函数库用于数组运算。

  2. 广播功能:广播是 NumPy 对不同形状数组进行数值计算的方式,它对 NumPy 数组的所有运算都适用。

  3. 整合 C/C++/Fortran 代码的能力:NumPy 的大量算法都经过优化,可以直接使用 C、C++ 或 Fortran 编写的代码,这样就可以避免 Python 自带的循环的低效率问题。

  4. 用于线性代数的函数库:NumPy 提供了很多用于线性代数的函数库,如矩阵乘法、矩阵求逆、求解线性方程组等。

  5. 用于统计学的函数库:NumPy 提供了许多用于统计学的函数,如计算均值、中位数、标准差等。

  6. 用于随机数的函数库:NumPy 提供了随机数生成的功能,可以生成符合各种分布的随机数。

  7. 用于快速傅里叶变换的函数库:NumPy 提供了快速傅里叶变换的函数库,用于信号处理和图像处理等领域。

NumPy 在科学计算、数据分析、机器学习等领域有着广泛的应用,是 Python 中最重要的科学计算库之一。

2.Numpy快速入门

NumPy中数组的维称作轴(axis),轴的个数叫做行(rank)。比如:[1, 2, 1],轴的个数为1,行(rank)就是1。

[[ 1., 0., 0.], [ 0., 1., 2.]] 上面这个数组有2行(也就是它是2维的),第一位维度的长度为2(也就是2行),第二维度的长度为3(也就是3列)

NumPy的数组类叫作ndarray,下面是ndarray的几个重要属性:

ndarray.ndim:数组的轴的个数(就是维数)

ndarray.shape:数组的维度(是一个元组)。比如矩阵有n行m列,那么shape为(n,m)

ndarray.size:数组元素的个数。也是shape(n,m)元素的乘积

ndarray.dtype:数组元素类型的描述。例如:numpy.int32, numpy.int16, and numpy.float64 ;

ndarray.itemsize:数组每个元素的字节大小。对于类型为floa64的元素,itemsize为8(=64/8,1byte=8bit)

ndarray.data:数组的缓存数据。通常情况下通过索引获取数据,不必要使用这个属性

以下是numpy的一些常用方法:

import numpy  as np
a=np.arange(15)  # 生成从0开始(包括0),到15(不包括15)的一维整数数组
b=a.reshape(3,5)  # 一维数组重塑为二维数组

print(a)
print(b)
print("b.shape=",b.shape)  # 打印数组的形状
print("b.ndim=",b.ndim)  # 数组的维度数
print("b.dtype.name=",b.dtype.name)  # 数组的数据类型名称
print("b.itemsize=",b.itemsize)  # 数组中每个元素的大小(以字节为单位)
print("b.size=",b.size)  # 数组中的元素总数
print("b.type=",type(b))  # 数组的类型
print(b.dtype)  # NumPy数据类型

# 输出:
'''
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14]
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]]
b.shape= (3, 5)
b.ndim= 2
b.dtype.name= int32
b.itemsize= 4
b.size= 15
b.type= <class 'numpy.ndarray'>
int32
'''

创建数组:

a=np.array([1,2,3])
print(a,a.dtype)  # 打印a的内容和数据类型

b=np.array([1,2,3,4,5.0])
print(b.dtype)  # 由于数组b中包含至少一个浮点数(5.0),所以整个数组的数据类型会被提升为浮点数类型。这通常意味着数组b的数据类型会是float64(在64位系统上)

# 输出:
'''
[1 2 3] int32
float64
'''

创建数组的错误示例:

# 一个常见错误就是:提供给array的参数是多个数字,而不是包含数字的列表
a=np.array(1,2,3,4)  # 错误
a=np.array([1,2,3,4]) # 正确

# 输出报错:
'''
TypeError: array() takes from 1 to 2 positional arguments but 4 were given
'''

创建多维数组:

# 创建多维数组
b=np.array([(1,2,3,5),(4,5,6,7)])
b

# 输出:
'''
array([[1, 2, 3, 5],
       [4, 5, 6, 7]])
'''

创建多维数组并声明数据类型(常见的数据类型有整数、浮点数、复数、布尔型、字符串、时间日期、自定义等):

# 创建数组的时候,可以声明数组的数据类型
c=np.array([[1,2],[3,4]],dtype=complex)  # 复数类型
c

# 输出:
'''
array([[1.+0.j, 2.+0.j],
       [3.+0.j, 4.+0.j]])
'''

numpy 中的 zeros()ones(), 和 empty() 函数:

1.zeros(): 这个函数用于创建元素全为0的数组,可以指定数组的形状和数据类型。例如:

import numpy as np  
a = np.zeros((2, 3))  # 创建一个 2x3 的数组,所有元素都是 0 
a
# 输出:
'''
array([[0., 0., 0.],
       [0., 0., 0.]])
'''

2.ones(): 这个函数用于创建元素全为1的数组,也可以指定数组的形状和数据类型。例如:

b = np.ones((3, 2))  # 创建一个 3x2 的数组,所有元素都是 1  
b
# 输出:
'''
array([[1., 1.],
       [1., 1.],
       [1., 1.]])
'''

3.empty(): 这个函数用于创建一个具有指定形状的新数组,但会分配新的内存空间但不设置数组中的值。因此,数组中的值可能是任意的,通常是未初始化的内存内容。其数据类型默认为 float64,但也可以指定。例如:

c = np.empty((2, 2))  # 创建一个 2x2 的数组,但值可能是任意的  
c
# 输出:
'''
array([[0., 0.],
       [0., 0.]])
'''

empty() 函数返回数组的内容是未初始化的,这意味着它可能包含任何值,取决于分配给该内存空间的先前内容。因此,通常不建议在不需要随机或未定义值的情况下使用 empty()。使用这些函数时,明确数据类型需求,并在需要时通过 dtype 参数来指定它。例如:

d = np.zeros((2, 2), dtype=int)  # 创建一个 2x2 的数组,所有元素都是 0,数据类型为 int  
e = np.ones((3,), dtype=np.complex64)  # 创建一个长度为 3 的一维数组,所有元素都是 1+0j,数据类型为 complex64

创建多维数组并声明数据类型(常见的数据类型有整数、浮点数、复数、布尔型、字符串、时间日期、自定义等):

from numpy import pi
print(np.linspace(0,2,9))  # 0-2中等差的9个数
x=np.linspace(0,2*pi,100)
f=np.sin(x)  # f结果集

# 输出:
'''
[0.   0.25 0.5  0.75 1.   1.25 1.5  1.75 2.  ]
'''

如果数组元素太多,NumPy就会自动跳过中间部分的元素并且只打印边界元素:

print(np.arange(10000))
print(np.arange(10000).reshape(100,100))
# 输出:
'''
[   0    1    2 ... 9997 9998 9999]
[[   0    1    2 ...   97   98   99]
 [ 100  101  102 ...  197  198  199]
 [ 200  201  202 ...  297  298  299]
 ...
 [9700 9701 9702 ... 9797 9798 9799]
 [9800 9801 9802 ... 9897 9898 9899]
 [9900 9901 9902 ... 9997 9998 9999]]

'''

数组的加减乘除等基本运算:

a=np.array([20,30,40,50])
b=np.arange(4)
c=a-b
print(c)  # 减
print(b**2)  # 乘
d=10*np.sin(a)  # 计算sin函数的结果集
print(d)
print(a<35)
b+=a # 加
print(b)

# 输出:
'''
[20 29 38 47]
[0 1 4 9]
[ 9.12945251 -9.88031624  7.4511316  -2.62374854]
[ True  True False False]
[20 31 42 53]

'''

在不同数据类型的数组计算过程中,结果的数据类型自动变为精度更高的数据类型:

a=np.ones(3,dtype=np.int32)
b=np.linspace(0,np.pi,3)
print(b.dtype.name)
c=a+b
print(c,c.dtype.name)
d=np.exp(c*1j)
print(d,d.dtype.name)

# 输出:
'''
float64
[1.         2.57079633 4.14159265] float64
[ 0.54030231+0.84147098j -0.84147098+0.54030231j -0.54030231-0.84147098j] complex128
'''

ndarray这个类有很多对数组的一元操作,比如计算整个数组的所有元素的和:

a=np.random.random((2,3))
print(a)
print(a.sum())  # 所有元素求和
print(a.min())  # 所有元素中的最小值
print(a.max())  # 所有元素中的最大值

# 输出:
'''
[[0.87250384 0.81230807 0.10868113]
 [0.16989921 0.19395409 0.97618396]]
3.13353028992432
0.10868112737793678
0.9761839642308886

'''

也可以按轴进行计算,比如:

b=np.arange(12).reshape(3,4)
print(b)
print(b.sum(axis=1))  # 计算每一行的和
print(b.sum(axis=0))  # 计算每一列的和
print(b.cumsum(axis=1))  # 计算每一行的累积和(对于第一行,0,0+1=1,1+2=3,3+3=6)

# 输出:
'''
[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]]
[ 6 22 38]
[12 15 18 21]
[[ 0  1  3  6]
 [ 4  9 15 22]
 [ 8 17 27 38]]

'''

也可以使用一些通用函数进行计算处理:

B=np.arange(3)  # 生成[0,1,2]数组
print(B)
print(np.exp(B))  # 计算e的幂
print(np.sqrt(B))  # 计算每个元素的平方根
C=np.array([2.,-1.,4.])
print(np.add(B,C))

# 输出:
'''
[0 1 2]
[1.         2.71828183 7.3890561 ]
[0.         1.         1.41421356]
[2. 0. 6.]

'''

下面的代码实现一个简单的前馈神经网络(Feedforward Neural Network)的训练过程,该网络包含一个隐藏层。训练是通过迭代优化神经网络的权重和偏置来实现的,具体使用了梯度下降算法(Gradient Descent)结合反向传播(Backpropagation)来更新这些参数:

import numpy as np

# Input array
X=np.array([[1,0,1,0],[1,0,1,1],[0,1,0,1]])

# Output
y=np.array([[1],[1],[0]])

# Sigmoid Function
def sigmoid (x):
    return 1/(1 + np.exp(-x))

# Derivative of Sigmoid Function
def derivatives_sigmoid(x):
    return x * (1 - x)

# Variable initialization
epoch=5000  # Setting training iterations
lr=0.1  # Setting learning rate
inputlayer_neurons = X.shape[1]  # number of features in data set
hiddenlayer_neurons = 3  # number of hidden layers neurons
output_neurons = 1  # number of neurons at output layer

# weight and bias initialization
wh=np.random.uniform(size=(inputlayer_neurons,hiddenlayer_neurons))
bh=np.random.uniform(size=(1,hiddenlayer_neurons))
wout=np.random.uniform(size=(hiddenlayer_neurons,output_neurons))
bout=np.random.uniform(size=(1,output_neurons))

for i in range(epoch):
    # Forward Propogation
    hidden_layer_input1=np.dot(X,wh)
    hidden_layer_input=hidden_layer_input1 + bh
    hiddenlayer_activations = sigmoid(hidden_layer_input)
    output_layer_input1=np.dot(hiddenlayer_activations,wout)
    output_layer_input= output_layer_input1+ bout
    output = sigmoid(output_layer_input)

    # Backpropagation
    E = y-output
    slope_output_layer = derivatives_sigmoid(output)
    slope_hidden_layer = derivatives_sigmoid(hiddenlayer_activations)
    d_output = E * slope_output_layer
    Error_at_hidden_layer = d_output.dot(wout.T)
    d_hiddenlayer = Error_at_hidden_layer * slope_hidden_layer
    wout += hiddenlayer_activations.T.dot(d_output) *lr
    bout += np.sum(d_output, axis=0,keepdims=True) *lr
    wh += X.T.dot(d_hiddenlayer) *lr
    bh += np.sum(d_hiddenlayer, axis=0,keepdims=True) *lr
print(output)
print(bh)
print(wh)

# 输出:
'''
[[0.9794804 ]
 [0.96522404]
 [0.04480502]]
[[-0.26860034  0.37221959  0.7842923 ]]
[[ 2.40872021 -0.48817713  0.81159704]
 [-2.09465169  0.99439973  0.72975946]
 [ 2.02487412 -1.07848612  0.40900003]
 [-1.02392791  0.81254532  0.4994015 ]]
'''

索引、切片、递归操作:

a=np.arange(10)**3
print(a)
print(a[2:5])
a[:6:2]=-1000  # 0-6之间的元素,每两个元素,第二个等于-1000
print(a)
print(a[::-1])  # 翻转元素

# 输出:
'''
[  0   1   8  27  64 125 216 343 512 729]
[ 8 27 64]
[-1000     1 -1000    27 -1000   125   216   343   512   729]
[  729   512   343   216   125 -1000    27 -1000     1 -1000]
'''

使用函数创建多维数组:

# 多维数组
def f(x,y):
    return 10*x+y
b=np.fromfunction(f,(5,4),dtype=int)
print(b)
print(b[2,3])
print(b[0:5,1])
print(b[:,1])
print(b[1:3,:])#在第2行和第3行的每一列元素

# 输出:
'''
[[ 0  1  2  3]
 [10 11 12 13]
 [20 21 22 23]
 [30 31 32 33]
 [40 41 42 43]]
23
[ 1 11 21 31 41]
[ 1 11 21 31 41]
[[10 11 12 13]
 [20 21 22 23]]
'''

对数组进行形状操作:

a=np.floor(10*np.random.random((3,4)))  # 向下取整
print(a)
print(a.shape)

# 输出:
'''
[[5. 1. 9. 6.]
 [5. 4. 7. 1.]
 [2. 1. 9. 2.]]
(3, 4)
'''
print(a.ravel()) # 返回一个平铺的数组
print(a.reshape(6,2)) # 重新改变形状

# 输出:
'''
[5. 1. 9. 6. 5. 4. 7. 1. 2. 1. 9. 2.]
[[5. 1.]
 [9. 6.]
 [5. 4.]
 [7. 1.]
 [2. 1.]
 [9. 2.]]
'''
z=np.arange(16).reshape(4,4)
z

# 输出:
'''
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15]])
'''
z.shape

# 输出:
'''
(4, 4)
'''
z.reshape(-1) # 一行

# 输出:
'''
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15])
'''
z.reshape(1,-1) # 一行

# 输出:
'''
array([[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15]])
'''
z.reshape(-1,1) # 一列

# 输出:
'''
array([[ 0],
       [ 1],
       [ 2],
       [ 3],
       [ 4],
       [ 5],
       [ 6],
       [ 7],
       [ 8],
       [ 9],
       [10],
       [11],
       [12],
       [13],
       [14],
       [15]])
'''
z.reshape(2,-1) # 不管有多少列,只要保证为两行

# 输出:
'''
array([[ 0,  1,  2,  3,  4,  5,  6,  7],
       [ 8,  9, 10, 11, 12, 13, 14, 15]])
'''
z.reshape(-1,2) # 不管有多少行,只要保证为2列

# 输出:
'''
array([[ 0,  1],
       [ 2,  3],
       [ 4,  5],
       [ 6,  7],
       [ 8,  9],
       [10, 11],
       [12, 13],
       [14, 15]])
'''

以上内容总结自网络,如有帮助欢迎转发,我们下次再见!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/749764.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

局域网聊天软件 matrix

窝有 3 只 Android 手机 (3 号手机, 6 号手机, 9 号手机), 2 台 ArchLinux PC (4 号 PC, 6 号 PC), 1 台 Fedora CoreOS 服务器 (5 号). (作为穷人, 窝使用的基本上是老旧的二手设备, 比如 5 年前的手机, 9 年前的笔记本, 10 年前的古老 e5v3 主机, 都比较便宜. ) 窝经常需要 …

【Git】安装与常用命令

一、Git环境配置 二、获取本地仓库 三、基础操作指令 四、分支 Git Bash 使用到基本 Linux 命令 在使用 Git 进行版本控制时&#xff0c;经常需要在 Git Bash 或其他终端中使用一些基本的 Linux 命令。以下是常见的 Git 命令和基本的 Linux 命令示例。 基本 Linux 命令 ls/ll…

无线麦克风推荐哪些品牌,一文揭秘无线麦克风领夹哪个牌子好!

​究竟该如何选择麦克风呢&#xff1f;又该如何挑选无线麦克呢&#xff1f;询问我关于麦克风选择问题的人着实不少。对于那些仅仅是想要简单地自我娱乐的朋友而言&#xff0c;着实没必要去折腾&#xff0c;直接使用手机自带的麦克风便可以了。 但若是处于想要直播、拍摄短视频…

FPGA PCIe加载提速方案

目录 1.bit流压缩 2.flash加载速度 3.Tandem模式 1.bit流压缩 set_property BITSTREAM.GENERAL.COMPRESS TRUE [current_design] 2.flash加载速度 打开bitstream setting&#xff0c;设置SPI的线宽和速率&#xff08;线宽按原理图设置&#xff0c;速率尽可能高&#xff09…

async异步函数

文章目录 异步函数&#xff08;用 async 声明的函数&#xff09;异步函数的返回值async/await 的使用异步函数的异常处理总结 感谢铁子阅读&#xff0c;觉得有帮助的话点点关注点点赞&#xff0c;谢谢&#xff01; 异步函数&#xff08;用 async 声明的函数&#xff09; 异步函…

电阻代码的谐音助记口诀

整理电子信息的课设&#xff0c;发现当时的笔记&#xff0c;记录一下&#xff0c;时间过得真快啊。 01234黑棕红橙黄 56789绿蓝紫灰白 银色和金色代表误差&#xff0c; 银色百分之十 金色百分之五 可以这么理解&#xff0c;运动会奖牌&#xff0c;金牌比银牌等级高&#xff…

Django(根据Models中模型类反向生成数据库表)—— python篇

一、数据库的配置 1、 django默认支持 sqlite&#xff0c;mysql, oracle,postgresql数据库。 sqlite&#xff1a;django默认使用sqlite的数据库&#xff0c;默认自带sqlite的数据库驱动 , 引擎名称&#xff1a;django.db.backends.sqlite3 mysql&#xff1a;引擎名称&#xff…

python实训day5

1、 from ming import getconn conn getconn("gaoming") print() sql [("select * from dept", ()),#"dept"的表中选择所有列("delete from person where sid<%s", (4,)),#删除"person"表中"sid"列小于4的记…

【JavaScript】JS对象和JSON

目录 一、创建JS对象 方式一&#xff1a;new Object() 方式二&#xff1a;{属性名:属性值,...,..., 方法名:function(){ } } 二、JSON格式 JSON格式语法&#xff1a; JSON与Java对象互转: 三、JS常见对象 3.1数组对象API 3.2 其它对象API 一、创建JS对象 方式一&#xff1a;new…

君諾外匯:为什么巴菲特现在加倍下注油气股票?油价上涨是主因吗?

近年来&#xff0c;以巴菲特为代表的一些顶级投资者开始在能源领域加大投资力度&#xff0c;特别是油气股票。这一转变引发了广泛关注&#xff0c;特别是在油价上涨的背景下。本文将Juno markets外匯深入分析巴菲特投资策略的变化原因&#xff0c;探讨其在能源市场的布局及未来…

如何用Vue3和Plotly.js实现一个动态3D图的在线展示

本文由ScriptEcho平台提供技术支持 项目地址&#xff1a;传送门 基于 Plotly.js 的交互式图表动画 应用场景 本代码演示了如何使用 Plotly.js 创建交互式图表动画&#xff0c;其中一个区域填充的区域在给定时间间隔内更新其数据。这种动画可用于可视化时间序列数据或展示数…

冷门赛道,视频号励志语录赛道详解,新手轻松上手

大家好&#xff0c;我是闷声轻创&#xff0c;在当今数字化时代&#xff0c;社交媒体已成为人们获取信息、分享生活和实现个人价值的重要渠道。视频号&#xff0c;作为新兴的短视频平台&#xff0c;以其独特的优势和巨大的流量潜力&#xff0c;吸引了众多创作者的目光。今天我将…

华为畅享系列多款产品升级HramonyOS 4.2版本,一篇带你解读

最近华为畅享系列多款手机陆续迎来了HarmonyOS 4.2新版本&#xff0c;华为畅享70S、华为畅享70 Pro、华为畅享60X、华为畅享60 Pro和华为畅享50 Pro都在升级计划中。这次升级的4.2版本不仅功能强大&#xff0c;重点是好玩又实用&#xff0c;速来围观&#xff01; 那本次升级版本…

基于JSP的水果销售管理网站

开头语&#xff1a;你好呀&#xff0c;我是计算机学长猫哥&#xff01;如果有相关需求&#xff0c;文末可以找到我的联系方式。 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;JSP技术 工具&#xff1a;B/S架构 系统展示 首页 管理员功能模块 用户前…

使用原子子表创建可重用的子组件

原子子表是一个图形对象&#xff0c;可帮助您在Stateflow图表中创建独立的子部件。原子子表允许&#xff1a; 对具有多个状态或层次结构的图表进行微小更改后&#xff0c;模拟速度更快。 在多个图表和模型中重复使用相同的状态或子表。 易于团队开发&#xff0c;适用于在同一图…

聊一聊UDF/UDTF/UDAF是什么,开发要点及如何使用?

背景介绍 UDF来源于Hive&#xff0c;Hive可以允许用户编写自己定义的函数UDF&#xff0c;然后在查询中进行使用。星环Inceptor中的UDF开发规范与Hive相同&#xff0c;目前有3种UDF&#xff1a; A. UDF--以单个数据行为参数&#xff0c;输出单个数据行&#xff1b; UDF&#…

GMSB文章六:微生物SCFA关联分析

欢迎大家关注全网生信学习者系列&#xff1a; WX公zhong号&#xff1a;生信学习者Xiao hong书&#xff1a;生信学习者知hu&#xff1a;生信学习者CDSN&#xff1a;生信学习者2 介绍 微生物短链脂肪酸&#xff08;SCFAs&#xff09;是由肠道微生物发酵膳食纤维、抗性淀粉、低…

@城规人快来抄作业!转GIS开发月薪12000+

从性价比极低的时薪&#xff0c;到相对稳定的月薪过万&#xff0c;我做对了哪些事情&#xff1f; 今天分享的是城乡规划专业的L拿到GIS开发高薪offer的故事。 初识新中地 该同学是城乡规划专业本科&#xff0c;下面称他为L同学。 L同学是今年夏天在网络上了解了GIS开发和新…

Kafka入门到精通(四)-SpringBoot+Kafka

一丶IDEA创建一个空项目 二丶添加相关依赖 <dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>org.springf…

MySQL改密

这里写目录标题 更改登录密码&#xff1a;有权限账号能登录mysql中&#xff1a;有权限账号不能登录mysql中&#xff1a;mysql5.6版本命令mysql5.7版本命令修改密码8.0版本改完后&#xff1a; mysql登录不上了本机安装了5.6后&#xff0c;又安装了mysql8.0 更改登录密码&#xf…