聊一聊UDF/UDTF/UDAF是什么,开发要点及如何使用?

背景介绍

UDF来源于Hive,Hive可以允许用户编写自己定义的函数UDF,然后在查询中进行使用。星环Inceptor中的UDF开发规范与Hive相同,目前有3种UDF:

A. UDF--以单个数据行为参数,输出单个数据行;

UDF(User Defined Function),即用户自定义函数,能结合SQL语句一起使用,更好地表达复杂的业务逻辑,一般以单个数据行为参数,输出单个数据行;比如数学函数、字符串函数、时间函数、拼接函数

B. UDTF: 以一个数据行为参数,输出多个数据行为一个表作为输出;

UDTF(User Defined Table Function),即用户自定义表函数,它与UDF类似。区别在于UDF只能实现一对一,而它用来实现多(行/列)对多(行/列)数据的处理逻辑。一般以一个数据行为参数,输出多个数据行为一个表作为输出,如lateral、view、explore;

C. UDAF: 以多个数据行为参数,输出一个数据行;

UDAF(User Defined Aggregate Function)用户自定义聚合函数,是由用户自主定义的,用法同如MAX、MIN和SUM已定义的聚合函数一样的处理函数。而且,不同于只能处理标量数据的系统定义的聚合函数,UDAF的可以接受并处理更广泛的数据类型,如用对象类型、隐式类型或者LOB存储的多媒体数据。由于UDAF也属于聚合函数中的一种,同样也需要与GROUPBY结合使用。

一般UDAF以多个数据行为参数,接收多个数据行,并输出一个数据行,比如COUNT、MAX;

UDF、UDTF、UDAF的开发要点及使用DEMO

星环Quark计算引擎中内置了很多函数,同时支持用户自行扩展,按规则添加后即可在sql执行过程中使用,目前支持UDF、UDTF、UDAF三种类型,一般UDF应用场景较多,后面将着重介绍UDF的开发与使用。UDAF及UDTF将主要介绍开发要点以及Demo示例。

Quark的UDF接口兼容开源Hive的UDF接口,用户可以参考开源Hive的UDF手册,或者直接把开源Hive的UDF迁移到Quark上。

UDF

Quark数据类型

Quark类型

Java原始类型

Java包装类

hadoop.hive.ioWritable

tinyintbyteByteByteWritable
smallintshortShortShortWritable
intintIntegerIntWritable
bigintlongLongLongWritable
string-StringText
charcharCharacterHiveCharWritable
booleanbooleanBooleanBooleanWritable
floatfloatFloatFloatWritable
double doubleDoubleDoubleWritable
decimal-BigDecimalHiveDecimalWritable
date-DateDateWritable
array-ListArrayListWritable
Map<K,V>-Map<K.V>HashMapWritable

UDF函数

Quark 提供了两个实现 UDF 的方式:

第一种:继承 UDF 类
  • 优点:实现简单;支持Quark的基本类型、数组和Map;支持函数重载。
  • 缺点:逻辑较为简单,只适合用于实现简单的函数
第二种:继承 GenericUDF 类
  • 优点:支持任意长度、任意类型的参数;可以根据参数个数和类型实现不同的逻辑;资源消耗更低;可以实现初始化和关闭资源的逻辑(initialize、close)。
  • 缺点:实现比继承UDF要复杂一些

一般在以下几种场景下考虑使用GenericUDF:

  • 传参情况复杂,比如某UDF要传参数有多种数量或多种类型的情况,在UDF中支持这种场景我们需要实现N个不同的evaluate()方法分别对应N种场景的传参,在GenericUDF我们只需在一个方法内加上判断逻辑,对不同的输入路由到不同的处理逻辑上即可。还有比如某UDF参数既要支持String list参数,也要支持Integer list参数。你可能认为我们只要继续多重载方法就好了,但是Java不支持同一个方法重载参数只有泛型类型不一样,所以该场景只能用GenericUDF。
  • 需要传非Writable的或复杂数据类型作为参数。比如嵌套数据结构,传入Map的key-value中的value为list数据类型,或者比如数据域数量不确定的Struct结构,都更适合使用GenericUDF在运行时捕获数据的内部构造。
  • 该UDF被大量、高频地使用,所以从收益上考虑,会尽可能地优化一切可以优化的地方,则GenericUDF相比UDF在operator中避免了多次反射转化的资源消耗(后面会细讲),更适合被考虑。
  • 该UDF函数功能未来预期的重构、扩展场景较多,需要做得足够可扩展,则GenericUDF在这方面更优秀。

pom文件的依赖导入

UDF开发依赖

<dependency>
    <groupId>org.apache.hive</groupId>
    <artifactId>inceptor-exec</artifactId>
    <version>xxx</version>
</dependency>

继承示例

1.继承 UDF 类

该方式实现简单,只需新建一个类继承org.apache.hadoop.hive.ql.exec.UDF;

继承UDF类必须实现evaluate方法且返回值类型不能为 void,支持定义多个evaluate方法不同参数列表用于处理不同类型数据;

可通过完善@Description展示UDF用法 UDF样例。

import org.apache.hadoop.hive.ql.exec.UDF;
import org.apache.hadoop.hive.ql.exec.Description;
 
 
@Description(
    name="my_plus",
    value="my_plus() - if string, do concat; if integer, do plus",
    extended = "Example : \n    >select my_plus('a', 'b');\n    >ab\n    >select my_plus(3, 5);\n    >8"
)
/**
 * 实现UDF函数,若字符串执行拼接,int类型执行加法运算。
 */
public class AddUDF extends UDF {
    /**
     * 编写一个函数,要求如下:
     * 1. 函数名必须为 evaluate
     * 2. 参数和返回值类型可以为:Java基本类型、Java包装类、org.apache.hadoop.io.Writable等类型、List、Map
     * 3. 函数一定要有返回值,不能为 void
     */
    public String evaluate(String... parameters) {
        if (parameters == null || parameters.length == 0) {
            return null;
        }
        StringBuilder sb = new StringBuilder();
        for (String param : parameters) {
            sb.append(param);
        }
        return sb.toString();
    }
    /**
     * 支持函数重载
     */
    public int evaluate(IntWritable... parameters) {
        if (parameters == null || parameters.length == 0) {
            return 0;
        }
        long sum = 0;
        for (IntWritable currentNum : parameters) {
            sum = Math.addExact(sum, currentNum.get());
        }
        return (int) sum;
    }
}
2.继承 GenericUDF 类

GenericUDF相比与UDF功能更丰富,支持所有参数类型,实现起来也更加复杂。org.apache.hadoop.hive.ql.udf.generic.GenericUDF API提供了一个通用的接口将任何数据类型的对象当作泛型Object去调用和输出,参数类型由ObjectInspector封装;参数Writable类由DeferredObject封装,使用时简单类型可直接从Writable获取,复杂类型可由ObjectInspector解析。

Java的ObjectInspector类,用于帮助Quark了解复杂对象的内部架构,通过创建特定的ObjectInspector对象替代创建具体类对象,在内存中储存某类对象的信息。在UDF中,ObjectInspector用于帮助Hive引擎将HQL转成MR Job时确定输入和输出的数据类型。Hive语句会生成MapReduce Job执行,所以使用的是Hadoop数据格式,不是编写UDF的Java的数据类型,比如Java的int在Hadoop为IntWritable,String在Hadoop为Text格式,所以我们需要将UDF内的Java数据类型转成正确的Hadoop数据类型以支持Hive将HQL生成MapReduce Job。

继承 GenericUDF 后,必须实现以下三个方法:

public class MyCountUDF extends GenericUDF {
        private PrimitiveObjectInspector.PrimitiveCategory[] inputType;
        private transient ObjectInspectorConverters.Converter intConverter;
        private transient ObjectInspectorConverters.Converter longConverter;
        // 初始化
        @Override
        public ObjectInspector initialize(ObjectInspector[] arguments) throws UDFArgumentException {
              
        }
        // DeferredObject封装实际参数的对应Writable类
        @Override
        public Object evaluate(DeferredObject[] deferredObjects) throws HiveException {
         
        }
        // 函数信息
        @Override
        public String getDisplayString(String[] strings) {
          
        }
}

initialize()方法只在 GenericUDF 初始化时被调用一次,执行一些初始化操作,包括:参数个数检查;参数类型检查与转换;确定返回值类型。

a. 参数个数检查;

可通过 arguments 数组的长度来判断函数参数的个数:

//  检查该记录是否传过来正确的参数数量,arguments的长度不为2时,则抛出异常
    if (arguments.length != 2) {
      throw new UDFArgumentLengthException("arrayContainsExample only takes 2 arguments: List<T>, T");
    }
b. 参数类型检查与转换;

针对该UDF的每个参数,initialize()方法都会收到一个对应的ObjectInspector参数,通过遍历ObjectInspector数组检查每个参数类型,根据参数类型构造ObjectInspectorConverters.Converter,用于将Hive传递的参数类型转换为对应的Writable封装对象ObjectInspector,供后续统一处理。

ObjectInspector内部有一个枚举类 Category,代表了当前 ObjectInspector 的类型。

public interface ObjectInspector extends Cloneable {
  public static enum Category {
    PRIMITIVE, // Hive原始类型
    LIST, // Hive数组
    MAP, // Hive Map
    STRUCT, // 结构体
    UNION // 联合体
  };
}

Quark原始类型又细分了多种子类型,PrimitiveObjectInspector 实现了 ObjectInspector,可以更加具体的表示对应的Hive原始类型。

public interface PrimitiveObjectInspector extends ObjectInspector {
 
  /**
   * The primitive types supported by Quark.
   */
  public static enum PrimitiveCategory {
    VOID, BOOLEAN, BYTE, SHORT, INT, LONG, FLOAT, DOUBLE, STRING,
    DATE, TIMESTAMP, BINARY, DECIMAL, VARCHAR, CHAR, INTERVAL_YEAR_MONTH, INTERVAL_DAY_TIME,
    UNKNOWN
  };
}

参数类型检查与转换示例:

for (int i = 0; i < length; i++) {       // 遍历每个参数
    ObjectInspector currentOI = arguments[i];
    ObjectInspector.Category type = currentOI.getCategory();     // 获取参数类型
    if (type != ObjectInspector.Category.PRIMITIVE) {         // 检查参数类型
        throw new UDFArgumentException("The function my_count need PRIMITIVE Category, but get " + type);
    }
    PrimitiveObjectInspector.PrimitiveCategory primitiveType =
        ((PrimitiveObjectInspector) currentOI).getPrimitiveCategory();
    inputType[i] = primitiveType;
    switch (primitiveType) {        // 参数类型转换
        case INT:
            if (intConverter == null) {
                ObjectInspector intOI = PrimitiveObjectInspectorFactory.getPrimitiveWritableObjectInspector(primitiveType);
                intConverter = ObjectInspectorConverters.getConverter(currentOI, intOI);
            }
            break;
        case LONG:
            if (longConverter == null) {
                ObjectInspector longOI = PrimitiveObjectInspectorFactory.getPrimitiveWritableObjectInspector(primitiveType);
                longConverter = ObjectInspectorConverters.getConverter(currentOI, longOI);
            }
            break;
        default:
            throw new UDFArgumentException("The function my_count need INT OR BIGINT, but get " + primitiveType);
    }
}
c. 确定函数返回值类型

initialize() 需要 return 一个 ObjectInspector 实例,用于表示自定义UDF返回值类型。initialize() 的返回值决定了 evaluate() 的返回值类型。创建ObjectInspector时,不要用new的方式创建,应该用工厂模式去创建以保证相同类型的ObjectInspector只有一个实例,且同一个ObjectInspector可以在代码中多处被使用。

// 自定义UDF返回值类型为Long
return PrimitiveObjectInspectorFactory.writableLongObjectInspector;
完整的 initialize() 函数
public ObjectInspector initialize(ObjectInspector[] arguments) throws UDFArgumentException {
        int length = arguments.length;
        inputType = new PrimitiveObjectInspector.PrimitiveCategory[length];
        for (int i = 0; i < length; i++) {
            ObjectInspector currentOI = arguments[i];
            ObjectInspector.Category type = currentOI.getCategory();
            if (type != ObjectInspector.Category.PRIMITIVE) {
                throw new UDFArgumentException("The function my_count need PRIMITIVE Category, but get " + type);
            }
            PrimitiveObjectInspector.PrimitiveCategory primitiveType =
                ((PrimitiveObjectInspector) currentOI).getPrimitiveCategory();
            inputType[i] = primitiveType;
            switch (primitiveType) {
                case INT:
                    if (intConverter == null) {
                        ObjectInspector intOI = PrimitiveObjectInspectorFactory.getPrimitiveWritableObjectInspector(primitiveType);
                        intConverter = ObjectInspectorConverters.getConverter(currentOI, intOI);
                    }
                    break;
                case LONG:
                    if (longConverter == null) {
                        ObjectInspector longOI = PrimitiveObjectInspectorFactory.getPrimitiveWritableObjectInspector(primitiveType);
                        longConverter = ObjectInspectorConverters.getConverter(currentOI, longOI);
                    }
                    break;
                default:
                    throw new UDFArgumentException("The function my_count need INT OR BIGINT, but get " + primitiveType);
            }
        }
        return PrimitiveObjectInspectorFactory.writableLongObjectInspector;
    }

evaluate()方法是GenericUDF的核心方法,自定义UDF的实现逻辑。代码实现步骤可以分为三部分:参数接收;自定义UDF核心逻辑;返回处理结果。

第一步:参数接收

evaluate() 的参数就是 自定义UDF 的参数。

/**
 * Evaluate the GenericUDF with the arguments.
 *
 * @param arguments
 *          The arguments as DeferedObject, use DeferedObject.get() to get the
 *          actual argument Object. The Objects can be inspected by the
 *          ObjectInspectors passed in the initialize call.
 * @return The
 */
public abstract Object evaluate(DeferredObject[] arguments)
  throws HiveException;

通过源码注释可知,DeferedObject.get() 可以获取参数的值。

/**
 * A Defered Object allows us to do lazy-evaluation and short-circuiting.
 * GenericUDF use DeferedObject to pass arguments.
 */
public static interface DeferredObject {
  void prepare(int version) throws HiveException;
  Object get() throws HiveException;
};

再看看 DeferredObject 的源码,DeferedObject.get() 返回的是 Object,传入的参数不同,会是不同的Java类型。

第二步:自定义UDF核心逻辑

这一部分根据实际项目需求自行编写。

第三步:返回处理结果

这一步和 initialize() 的返回值一一对应,基本类型返回值有两种:Writable类型 和 Java包装类型:

  • 在 initialize 指定的返回值类型为 Writable类型 时,在 evaluate() 中 return 的就应该是对应的 Writable实例。
  • 在 initialize 指定的返回值类型为 Java包装类型 时,在 evaluate() 中 return 的就应该是对应的 Java包装类实例。

evalute()示例

@Override
    public Object evaluate(DeferredObject[] deferredObjects) throws HiveException {
        LongWritable out = new LongWritable();
        for (int i = 0; i < deferredObjects.length; i++) {
            PrimitiveObjectInspector.PrimitiveCategory type = this.inputType[i];
            Object param = deferredObjects[i].get();
            switch (type) {
                case INT:
                    Object intObject = intConverter.convert(param);
                    out.set(Math.addExact(out.get(), ((IntWritable) intObject).get()));
                    break;
                case LONG:
                    Object longObject = longConverter.convert(param);
                    out.set(Math.addExact(out.get(), ((LongWritable) longObject).get()));
                    break;
                default:
                    throw new IllegalStateException("Unexpected type in MyCountUDF evaluate : " + type);
            }
        }
        return out;
    }

getDisplayString() 返回的是 explain 时展示的信息。这里不能return null,否则可能在运行时抛出空指针异常。

@Override
public String getDisplayString(String[] strings) {
    return "my_count(" + Joiner.on(", ").join(strings) + ")";
}
自定义GenericUDF完整示例
@Description(
    name="my_count",
    value="my_count(...) - count int or long type numbers",
    extended = "Example :\n    >select my_count(3, 5);\n    >8\n    >select my_count(3, 5, 25);\n    >33"
)
public class MyCountUDF extends GenericUDF {
    private PrimitiveObjectInspector.PrimitiveCategory[] inputType;
    private transient ObjectInspectorConverters.Converter intConverter;
    private transient ObjectInspectorConverters.Converter longConverter;
    @Override
    public ObjectInspector initialize(ObjectInspector[] objectInspectors) throws UDFArgumentException {
        int length = objectInspectors.length;
        inputType = new PrimitiveObjectInspector.PrimitiveCategory[length];
        for (int i = 0; i < length; i++) {
            ObjectInspector currentOI = objectInspectors[i];
            ObjectInspector.Category type = currentOI.getCategory();
            if (type != ObjectInspector.Category.PRIMITIVE) {
                throw new UDFArgumentException("The function my_count need PRIMITIVE Category, but get " + type);
            }
            PrimitiveObjectInspector.PrimitiveCategory primitiveType =
                ((PrimitiveObjectInspector) currentOI).getPrimitiveCategory();
            inputType[i] = primitiveType;
            switch (primitiveType) {
                case INT:
                    if (intConverter == null) {
                        ObjectInspector intOI = PrimitiveObjectInspectorFactory.getPrimitiveWritableObjectInspector(primitiveType);
                        intConverter = ObjectInspectorConverters.getConverter(currentOI, intOI);
                    }
                    break;
                case LONG:
                    if (longConverter == null) {
                        ObjectInspector longOI = PrimitiveObjectInspectorFactory.getPrimitiveWritableObjectInspector(primitiveType);
                        longConverter = ObjectInspectorConverters.getConverter(currentOI, longOI);
                    }
                    break;
                default:
                    throw new UDFArgumentException("The function my_count need INT OR BIGINT, but get " + primitiveType);
            }
        }
        return PrimitiveObjectInspectorFactory.writableLongObjectInspector;
    }
    @Override
    public Object evaluate(DeferredObject[] deferredObjects) throws HiveException {
        LongWritable out = new LongWritable();
        for (int i = 0; i < deferredObjects.length; i++) {
            PrimitiveObjectInspector.PrimitiveCategory type = this.inputType[i];
            Object param = deferredObjects[i].get();
            switch (type) {
                case INT:
                    Object intObject = intConverter.convert(param);
                    out.set(Math.addExact(out.get(), ((IntWritable) intObject).get()));
                    break;
                case LONG:
                    Object longObject = longConverter.convert(param);
                    out.set(Math.addExact(out.get(), ((LongWritable) longObject).get()));
                    break;
                default:
                    throw new IllegalStateException("Unexpected type in MyCountUDF evaluate : " + type);
            }
        }
        return out;
    }
    @Override
    public String getDisplayString(String[] strings) {
        return "my_count(" + Joiner.on(", ").join(strings) + ")";
    }
}

UDTF

UDTF函数作用都是输入一行数据,将该行数据拆分、并返回多行数据。不同的UDTF函数只是拆分的原理不同、作用的数据格式不同而已。

适用场景

  1. 流应用中对数据处理,如:字符串解析,hyperbase数据删除,时间段去重,时间段统计
  2. 数仓数集应用中需要将单行转换为多行,inceptor内置多种UDTF,如:explode,inline,json_tuple等

注意:返回UDTF结果的同时查询其他对象,须引用关键字 LATERAL VIEW

UDTF开发要点

1. 实现UDTF函数需要继承org.apache.hadoop.hive.ql.udf.generic.GenericUDTF

2. 然后重写/实现initialize, process, close三个方法

A. initialize初始化验证,返回字段名和字段类型

initialize初始化:UDTF首先会调用initialize方法,此方法返回UDTF的返回行的信息(返回个数,类型,名称)。initialize针对任务调一次, 作用是定义输出字段的列名、和输出字段的数据类型。

initialize方法示例
@Override
   /**
    * 返回数据类型:StructObjectInspector
    * 定义输出数据的列名、和数据类型。
    */
   public StructObjectInspector initialize(StructObjectInspector argOIs) throws UDFArgumentException {
       List<String> fieldNames = new ArrayList<String>(); //fieldNames为输出的字段名
       fieldNames.add("world");
 
       List<ObjectInspector> fieldOIs = new ArrayList<ObjectInspector>(); //类型,列输出类型
       fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
 
       return ObjectInspectorFactory.getStandardStructObjectInspector(fieldNames, fieldOIs);
   }
B. 初始化完成后,调用process方法,对传入的参数进行处理,通过forword()方法把结果返回

process:初始化完成后,会调用process方法,对传入的参数进行处理,可以通过forword()方法把结果写出。process传入一行数据写出去多次,传入一行数据输出多行数据,如:mapreduce单词计数。process针对每行数据调用一次该方法。在initialize初始化的时候,定义输出字段的数据类型是集合,调用forward()将数据写入到一个缓冲区,写入缓冲区的数据也要是集合。

process方法示例
//数据的集合
 private List<String> dataList = new ArrayList<String>();
 
  /**
  * process(Object[] objects) 参数是一个数组,但是hive中的explode函数接受的是一个,一进多出
  * @param args
  * @throws HiveException
  */
 public void process(Object[] args) throws HiveException {
     //我们现在的需求是传入一个数据,在传入一个分割符
 
     //1.获取数据
     String data = args[0].toString();
 
     //2.获取分割符
     String splitKey = args[1].toString();
 
     //3.切分数据,得到一个数组
     String[] words = data.split(splitKey);
 
     //4.想把words里面的数据全部写出去。类似在map方法中,通过context.write方法
     // 定义是集合、写出去是一个string,类型不匹配,写出也要写出一个集合
     for (String word : words) {
         //5.将数据放置集合,EG:传入"hello,world,hdfs"---->写出需要写n次,hello\world
         dataList.clear();//清空数据集合
 
         dataList.add(word);
 
         //5.写出数据的操作
         forward(dataList);
     }
 }
C. 最后调用close()方法进行清理工作

最后close()方法调用,对需要清理的方法进行清理,close()方法针对整个任务调一次

UDTF DEMO

下面UDTF 实现的是字符串的分拆,多行输出

package io.transwarp.udtf;
import java.util.ArrayList;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.exec.UDFArgumentLengthException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
public class SplitUDF extends GenericUDTF{
    @Override
    public void close() throws HiveException {
        // TODO Auto-generated method stub
    }
    @Override
    public StructObjectInspector initialize(ObjectInspector[] arg0) throws UDFArgumentException {
        // TODO Auto-generated method stub
        if(arg0.length != 1){
            throw new UDFArgumentLengthException("SplitString only takes one argument");
        }
         
        if(arg0[0].getCategory() != ObjectInspector.Category.PRIMITIVE){
            throw new UDFArgumentException("SplitString only takes string as a parameter");
        }
         
        ArrayList<String> fieldNames = new ArrayList<>();
        ArrayList<ObjectInspector> fieldOIs = new ArrayList<>();
         
        fieldNames.add("col1");
        fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
        fieldNames.add("col2");
        fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
         
        return ObjectInspectorFactory.getStandardStructObjectInspector(fieldNames, fieldOIs);
    }
    @Override
    public void process(Object[] arg0) throws HiveException {
        // TODO Auto-generated method stub
        String input = arg0[0].toString();
        String[] inputSplits = input.split("#");
        for (int i = 0; i < inputSplits.length; i++) {
            try {
                String[] result = inputSplits[i].split(":");
                forward(result);
            } catch (Exception e) {
                continue;
            }
        }
    }
}

执行效果如下:

如何使用UDTF

将UDTF打包后,放在inceptor server 所在节点之上(建议不要放在/user/lib/hive/lib/下),之后在连接inceptor执行以下命令,生成临时函数(server有效,重启inceptor失效)

add jar /tmp/timestampUDF.jar
drop temporary function timestamp_ms;
create temporary function timestamp_ms as 'io.transwarp.udf.ToTimestamp';
  
select date, timestamp_ms(date) from table1;

 UDAF

正如前面所说,UDAF是由用户自主定义的,虽然UDAF的使用可以方便对数据的运算处理,但是使用它的数量建议不要过多,因为UDAF的数量增长和性能下降成线性关系。另外,如果存在大量的嵌套UDAF,系统的性能也会降低,建议用户在可能的情况下写一个没有嵌套或者嵌套较少的UDAF实现相同功能来提高性能。

UDAF开发要点

1. 用户的UDAF必须继承了org.apache.hadoop.hive.ql.exec.UDAF;

2. 用户的UDAF必须包含至少一个实现了org.apache.hadoop.hive.ql.exec的静态类,诸如常见的实现了 UDAFEvaluator。

3. 一个计算函数必须实现的5个方法的具体含义如下:

  • - init():主要是负责初始化计算函数并且重设其内部状态,一般就是重设其内部字段。一般在静态类中定义一个内部字段来存放最终的结果。
  • - iterate():每一次对一个新值进行聚集计算时候都会调用该方法,计算函数会根据聚集计算结果更新内部状态。当输入值合法或者正确计算了,则就返回true。
  • - terminatePartial():Hive需要部分聚集结果的时候会调用该方法,必须要返回一个封装了聚集计算当前状态的对象。
  • - merge():Hive进行合并一个部分聚集和另一个部分聚集的时候会调用该方法。
  • - terminate():Hive最终聚集结果的时候就会调用该方法。计算函数需要把状态作为一个值返回给用户。

UDAF DEMO

下面的UDAF DEMO目标是实现找到最大值功能,以表中某一字段为参数,返回最大值。

package udaf.transwarp.io;
import org.apache.hadoop.hive.ql.exec.UDAF;
import org.apache.hadoop.hive.ql.exec.UDAFEvaluator;
import org.apache.hadoop.io.IntWritable;
 
//UDAF是输入多个数据行,产生一个数据行
//用户自定义的UDAF必须是继承了UDAF,且内部包含多个实现了exec的静态类
public class MaxiNumber extends UDAF{
    public static class MaxiNumberIntUDAFEvaluator implements UDAFEvaluator{
        //最终结果
        private IntWritable result;
        //负责初始化计算函数并设置它的内部状态,result是存放最终结果的
        @Override
        public void init() {
            result=null;
        }
        //每次对一个新值进行聚集计算都会调用iterate方法
        public boolean iterate(IntWritable value)
        {
            if(value==null)
                return false;
            if(result==null)
              result=new IntWritable(value.get());
            else
              result.set(Math.max(result.get(), value.get()));
            return true;
        }
                                                                                                                                  
        //Hive需要部分聚集结果的时候会调用该方法
        //会返回一个封装了聚集计算当前状态的对象
        public IntWritable terminatePartial()
        {
            return result;
        }
        //合并两个部分聚集值会调用这个方法
        public boolean merge(IntWritable other)
        {
            return iterate(other);
        }
        //Hive需要最终聚集结果时候会调用该方法
        public IntWritable terminate()
        {
            return result;
        }
    }
}

UDF 的打包与使用

操作前提

将开发好自定义UDF函数的项目打包成jar包,注意:jar 包中的自定义UDF 类名,不能和现有UDF 类,在包名+类名上,完全相同

部署方式

常见的UDF部署方式有以下三种:

  • 把UDF固化到image里,重新打image(推荐);
  • 其次是通过创建临时UDF(add jar + temporary function)的方式;
  • 创建永久UDF(hdfs jar+permanent function)的方式(可行,但不是很推荐);

方式一 固化UDF

  • 视频示例(仅作示范,详情查看下方文字)

此方式的核心逻辑是把UDF jar包放到image的/usr/lib/inceptor/下面,重新制作image。具体步骤如下:

以更换inceptor中的inceptor_2.10-1.1.0-transwarp-6.1.0.jar为例:

1. 进入inceptor image

docker run -it <inceptor_image_id> bash

2. 打开另一个terminal

3. 替换container中的jar包

docker cp <jar包名称> <container_id>:/usr/lib/inceptor/ <jar包名称>

image.png

4. commit修改记录

docker commit <container_id> REPOSITORY:TAG

5. 打开manager管理页面重新启动inceptor服务

6.重启完成后即可查看quark server的pod下/usr/lib/inceptor/是否有新增的jar包

方式二 创建临时UDF

  • 视频示例(仅作示范,详情查看下方文字)

1. 查看已存在jar包

LIST JAR;

2. 添加jar包

ADD JAR[S] <local_path>;
// Local_path是jar包所在Inceptor server节点的路径。

3. 创建临时UDF

CREATE TEMPORARY FUNCTION [<db_name>.]<function_name> AS <class_name>;

临时UDF在Inceptor重启后失效。如果需要更新临时UDF,需要重启Inceptor重新创建该临时UDF。

示例:

4. 验证临时UDF

SELECT [<db_name>.]<function_name>() FROM SYSTEM.DUAL;

5. 删除临时UDF

DROP TEMPORARY FUNCTION <if exists> <function_name>;

方式三 创建永久UDF

建议优先选取前两种方式,此方式虽然可行但不推荐,故仅介绍基础命令,暂无视频提供。

1. 查看已存在jar包

LIST JAR;

2. 添加jar包

ADD JAR[S] <local_or_hdfs_path>;
//Local_path是Inceptor server节点的路径。保证hive用户对jar所在的目录有读权限。

3. 创建永久UDF

CREATE PERMANENT FUNCTION [<db_name>.]<function_name> AS <class_name>;

如果Inceptor不在local mode,那么资源的地址也必须是非本地URI,比如HDFS地址。

4. 验证永久UDF

SELECT [<db_name>.]<function_name>() FROM SYSTEM.DUAL;

5. 删除永久UDF

DROP PERMANENT FUNCTION <if exists> <function_name>;

image.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/749738.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

GMSB文章六:微生物SCFA关联分析

欢迎大家关注全网生信学习者系列&#xff1a; WX公zhong号&#xff1a;生信学习者Xiao hong书&#xff1a;生信学习者知hu&#xff1a;生信学习者CDSN&#xff1a;生信学习者2 介绍 微生物短链脂肪酸&#xff08;SCFAs&#xff09;是由肠道微生物发酵膳食纤维、抗性淀粉、低…

@城规人快来抄作业!转GIS开发月薪12000+

从性价比极低的时薪&#xff0c;到相对稳定的月薪过万&#xff0c;我做对了哪些事情&#xff1f; 今天分享的是城乡规划专业的L拿到GIS开发高薪offer的故事。 初识新中地 该同学是城乡规划专业本科&#xff0c;下面称他为L同学。 L同学是今年夏天在网络上了解了GIS开发和新…

Kafka入门到精通(四)-SpringBoot+Kafka

一丶IDEA创建一个空项目 二丶添加相关依赖 <dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>org.springf…

MySQL改密

这里写目录标题 更改登录密码&#xff1a;有权限账号能登录mysql中&#xff1a;有权限账号不能登录mysql中&#xff1a;mysql5.6版本命令mysql5.7版本命令修改密码8.0版本改完后&#xff1a; mysql登录不上了本机安装了5.6后&#xff0c;又安装了mysql8.0 更改登录密码&#xf…

双麒麟系统!RK3588+银河麒麟/开放麒麟,全国产让您的产品更具竞争力

01 银河麒麟嵌入式系统介绍 银河麒麟嵌入式操作系统V10 SP1是为物联网及工业互联网场景设计的安全实时系统&#xff0c;基于Linux内核&#xff0c;采用“分域虚拟化 多域隔离”架构&#xff0c;结合了Linux的丰富生态和RTOS的硬实时能力。 该系统支持主流嵌入式芯片&#x…

“数字政协”平台如何提高政协工作效率?正宇软件助力建设!

随着信息技术的飞速发展&#xff0c;数字化已成为推动各行各业转型升级的重要力量。在政协工作中&#xff0c;数字政协平台的建设与运用&#xff0c;正成为提高政协工作效率、促进民主协商的重要手段。本文将从数字政协平台的功能特点、优势分析以及实践应用等方面&#xff0c;…

【Android】【Compose】Compose里面的Row和Column的简单使用

内容 Row和Column的简单使用方式和常用属性含义 Row 在 Jetpack Compose 中&#xff0c;Row 是一种用于在水平方向排列子元素的布局组件。它类似于传统 Android 中的 LinearLayout&#xff0c;但更加灵活和强大。 Row的代码 Composable inline fun Row(modifier: Modifier…

小九首度回应与小水分手传闻揭秘

#小九首度回应&#xff01;与小水分手传闻揭秘#近日&#xff0c;泰国娱乐圈掀起了一股热议的狂潮&#xff01;传闻中的“金童玉女”组合——“小水”平采娜与“小九”NINE疑似分手的消息&#xff0c;如同巨石投入平静的湖面&#xff0c;激起了千层浪花。而在这股狂潮中&#xf…

高效同步的PWM升压DC/DC转换器 SD6201/SD6201-AF

SD6201是高效同步的PWM升压DC/DC转换器优化为介质提供高效的解决方案电力系统。这些设备在输入电压介于0.9V和4.4V之间&#xff0c;带有1.4MHz固定频率切换。这些功能通过允许使用小型、薄型电感器以及陶瓷电容器。自动PWM/PFM轻负载下的模式切换可节省电力提高了效率。电压在2…

武汉星起航:挂牌上海股权托管交易中心,亚马逊影响力再掀波澜

在全球化日益加深的今天&#xff0c;跨境电商行业正迎来前所未有的发展机遇。而在这个风起云涌的时代&#xff0c;武汉星起航电子商务有限公司以其卓越的实力和前瞻性的战略眼光&#xff0c;成功在上海股权托管交易中心挂牌展示&#xff0c;正式登陆资本市场&#xff0c;这一重…

CSS的媒体查询:响应式布局的利器

关于CSS的媒体查询 CSS媒体查询是CSS层叠样式表(Cascading Style Sheets)中的一个核心功能&#xff0c;它使得开发者能够根据不同的设备特性和环境条件来应用不同的样式规则。这是实现响应式网页设计的关键技术&#xff0c;确保网站或应用能够在多种设备上&#xff0c;包括桌面…

提升用户转化率秘诀!Xinstall的H5拉起应用技术让您领先一步!

在移动互联网时代&#xff0c;App的推广和运营面临着诸多挑战。其中&#xff0c;H5页面如何高效、便捷地拉起应用&#xff0c;成为了一个亟待解决的问题。今天&#xff0c;我们就来谈谈如何利用Xinstall品牌&#xff0c;轻松解决这一痛点&#xff0c;提升用户体验&#xff0c;助…

CentOS 7.9 CDH6.3.2集群生产环境实战部署指南

一、环境准备 1、系统环境&#xff1a; # cat /etc/os-release 2、准备工作&#xff1a; 部署资源分配 节点centos 7.9&#xff08;生产&#xff09;节点规划Postgresql部署组件备注pgsql32c、128G、2TB国产数据库Postgresql&#xff08;翰高&#xff09;可根据实际情况调整…

启动台出现agent app的解决方法~

启动台出现agent app的解决方法&#xff5e; 如果用了战网&#xff0c;Battle.net&#xff0c;在卸载后有一个agent app&#xff0c;启动台删除不掉&#xff0c;应用程序里面没有&#xff0c;怎么办呢&#xff1f; 解决方法&#xff1a;找到这个app所在位置&#xff0c;可以通…

Facebook之梦:数字社交的无限可能

在当今数字化和全球化的时代&#xff0c;社交网络已经成为人们日常生活不可或缺的一部分。作为全球最大的社交平台之一&#xff0c;Facebook不仅连接了数十亿用户&#xff0c;还深刻影响了我们的社交方式、文化交流和信息传播。然而&#xff0c;Facebook所代表的不仅仅是一个网…

深入理解 Dubbo:分布式服务框架的核心原理与实践

目录 Dubbo 概述Dubbo 的架构Dubbo 的关键组件 服务提供者&#xff08;Provider&#xff09;服务消费者&#xff08;Consumer&#xff09;注册中心&#xff08;Registry&#xff09;监控中心&#xff08;Monitor&#xff09;调用链追踪&#xff08;Trace&#xff09; Dubbo 的…

【Java】字节数组 pcm 与 wav 格式互转 (附原理概述)

前言 最近实现了一个文字转语音的功能&#xff0c;语音引擎返回的是pcm格式的数据。需要转化成wav格式前端才能播放。本文首先会给出解决方案&#xff0c;后续会讲背后的原理。 场景 git 仓库 https://github.com/ChenghanY/pcm-wav-converter 1. pcm wav 转化工具类 入参和…

MES管理系统的实施难点以及解决方案

随着智能制造的浪潮席卷全球&#xff0c;MES管理系统成为了众多制造企业提升竞争力的关键武器。MES管理系统以其强大的功能&#xff0c;能够有效连接企业的上层ERP系统与底层自动化设备&#xff0c;实现生产过程的实时监控与优化。然而&#xff0c;实施MES管理系统并非一帆风顺…

Linux通用系统高危漏洞(CVE-2024-1086)修复案例

一、漏洞描述 2024年3月28日&#xff0c; Linux kernel权限提升漏洞&#xff08;CVE-2024-1086&#xff09;的PoC/EXP在互联网上公开&#xff0c;该漏洞的CVSS评分为7.8&#xff0c;目前漏洞细节已经公开披露&#xff0c;美国网络安全与基础设施安全局&#xff08;CISA&#x…

springboot框架使用Netty依赖中解码器的作用及实现详解

在项目开发 有需求 需要跟硬件通信 也没有mqtt 作为桥接 也不能http 请求 api 所以也不能 json字符串这么爽传输 所以要用tcp 请求 进行数据交互 数据还是16进制的 写法 有帧头 什么的 对于这种物联网的这种对接 我的理解就是 我们做的工作就像翻译 把这些看不懂的 字节流 变成…