Embedding的概念和展开

前言

本章,我们介绍一个非常细的细节技术。让我们微调大模型的一些特性和能力。

在大模型的AI套路演化过程中,其实经历了太多的技术革新和方式变化,Embedding其实也可能是其中一个高速湮灭的技术点之一。

对比LoRA现在大红大紫,我们不得不面对众多技术细节点,在各个方向,不同阶段的优势和劣势。多了解下对你更好的使用AIGC有帮助。

知识点

  • Embedding模型使用
  • 微调大模型

关键字的集合

Embedding可以认为是一系列关键字的集合。

比如到C站下載一個Embedding類型的,放到SD根目錄下的embeddings目錄下,界面上刷新下就看到。點擊后在關鍵字這裏就出現了對應的ID。

https://civitai.com/models/4115/jenna-ortega-wednesday-addams-embedding

图片

自己創建Embedding

见下图

图片

参数含义

  • Name: filename for the created embedding. You will also use this text in prompts when referring to the embedding.
    所创建嵌入的文件名。在引用嵌入时,您还将在提示中使用此文本。
  • Initialization text: the embedding you create will initially be filled with vectors of this text. If you create a one vector embedding named “zzzz1234” with “tree” as initialization text, and use it in prompt without training, then prompt “a zzzz1234 by monet” will produce same pictures as “a tree by monet”.
    初始化文本:您创建的嵌入最初将使用此文本的向量填充。如果您创建一个名为“zzzz1234”的向量嵌入,并使用“tree”作为初始化文本,并在提示中使用它而无需训练,则提示“a zzzz1234 by monet”将产生与“a tree by monet”相同的图片。
  • Number of vectors per token: the size of embedding. The larger this value, the more information about subject you can fit into the embedding, but also the more words it will take away from your prompt allowance. With stable diffusion, you have a limit of 75 tokens in the prompt. If you use an embedding with 16 vectors in a prompt, that will leave you with space for 75 - 16 = 59. Also from my experience, the larger the number of vectors, the more pictures you need to obtain good results.
    每个标记的向量数:嵌入的大小。此值越大,您可以在嵌入中容纳的主题信息就越多,但也会从提示限额中拿走更多的单词。在稳定扩散的情况下,提示中的标记数限制为 75 个。如果您在提示中使用包含 16 个向量的嵌入,则将为您留下 75 - 16 = 59 的空间。此外,根据我的经验,向量数量越多,获得良好结果所需的图片就越多。

官方指引文檔

https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Textual-Inversion

更为详细的解释有:

"embedding"是一个重要的概念,用于表示输入数据(例如文本或图像)的向量化表示。具体来说,embedding是一个将离散输入(如单词或图像的特征)转换为连续向量空间中的点的过程。这些向量捕捉了输入数据中的语义或特征信息,使得模型可以在这个连续空间中进行计算和推理。以下是有关Stable Diffusion中embedding的一些关键点:

  1. 文本嵌入(Text Embeddings):

    在Stable Diffusion中,文本描述(如提示或标签)需要被转换为向量表示。通常,使用预训练的语言模型(如BERT、GPT等)将文本转化为向量,这些向量保留了文本的语义信息。

    这些文本向量(embeddings)然后被输入到扩散模型中,指导图像生成过程。

  2. 图像嵌入(Image Embeddings):

    类似地,图像的特征也可以被表示为向量。这些向量可以通过卷积神经网络(CNN)等深度学习模型来提取,捕捉图像的视觉特征。

    图像嵌入可以在扩散模型中用于条件生成,即根据特定图像特征生成新图像。

  3. 条件生成(Conditional Generation):

    在Stable Diffusion模型中,embedding用于条件生成(conditional generation)。这意味着模型不仅根据噪声生成图像,还根据输入的条件(如文本描述或图像特征)生成符合条件的图像。

    条件生成过程中,模型将条件embedding与噪声向量结合,指导图像的逐步生成。

  4. 多模态嵌入(Multimodal Embeddings):

    Stable Diffusion可以处理多模态数据(即同时处理文本和图像)。在这种情况下,文本和图像的embedding可以被联合使用,以生成与文本描述一致的图像,或根据图像生成文本描述。

Embedding在扩散模型中的作用

在扩散模型(Diffusion Models)中,embedding的主要作用是提供附加的信息,使生成过程更加有条件和可控。扩散模型通过逐步去噪的过程生成数据(如图像),embedding在每一步去噪过程中提供指导,使生成的图像更符合输入条件。

实战在RA/SD中使用,效果情况如下:

Textual Inversion 就是Embedding . 用一个名字,保存多个你的Prompts,后续用的时候方便。

创建方式如下:

图片

使用方式:

点选 Embedding内容, 双击使用即可。

图片

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/749153.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

深度学习 - Transformer 组成详解

整体结构 1. 嵌入层(Embedding Layer) 生活中的例子:字典查找 想象你在读一本书,你不认识某个单词,于是你查阅字典。字典为每个单词提供了一个解释,帮助你理解这个单词的意思。嵌入层就像这个字典&#xf…

初识 Embedding,为何大家都基于它搭建私人智能客服?

随着 AI 技术的发展,大家在日常使用过程中经常会碰到一些目前 GPT4 也无法解决的问题: 无法获取个人私有数据信息,进行智能问答无法获取最新信息,LLM 模型训练都是都是有截止日期的无法定制化私有的专属模型,从而在某…

算法常见问题

1.c虚函数 虚函数是用来实现多态(polymorphism) 的一种机制。通过使用虚函数,可以在子类中重写父类中定义的方法,并且在运行时动态地确定要调用哪个方法。 在类定义中将一个成员函数声明为虚函数,需要使用 virtual 关键字进行修饰 。 通过指向…

山海相逢,因你而至!第九届全球边缘计算大会·深圳站圆满召开!

2024年6月22日,第九届全球边缘计算大会在深圳盛大开幕。本次盛会由边缘计算社区主办,并获得了EMQ、研华科技、华为等重量级单位的鼎力支持。大会汇聚了来自全球各地的业界精英,共同探讨边缘计算的前沿技术、应用趋势以及创新实践,…

Isaac Sim 9 物理(1)

使用Python USD API 来实现 Physics 。 以下内容中,大部分 Python 代码可以在 Physics Python 演示脚本文件中找到,本文仅作为个人学习笔记。 一.设置 USD Stage 和物理场景 Setting up a USD Stage and a Physics Scene USD Stage不知道怎么翻译&#…

docker 部署的 wordpress 接入阿里云短信服务 详细实操介绍

一、阿里云短信服务配置: 1、登录 阿里云短信服务 完成指引短信相关配置 2、创建RAM用户 并完成授权 出于安全及规范考虑 需通过RAM 用户来完成OponApl 接口调用,创建成功需完成短信接口(AliyunDysmsFullAccess、AliyunDysmsReadOnlyAccess…

【大模型】大模型微调方法总结(二)

1.Adapter Tuning 1.背景 2019年谷歌的研究人员首次在论文《Parameter-Efficient Transfer Learning for NLP》提出针对 BERT 的 PEFT微调方式,拉开了 PEFT 研究的序幕。他们指出,在面对特定的下游任务时,如果进行 Full-Fintuning&#xff0…

执行yum命令报错Could not resolve host: mirrors.cloud.aliyuncs.com; Unknown error

执行yum命令报错 [Errno 14] curl#6 - "Could not resolve host: mirrors.cloud.aliyuncs.com; Unknown error 修改图中所示两个文件: vim epel.repo vim CentOS-Base.repo 将所有的http://mirrors.cloud.aliyuncs.com 修改为http://mirrors.aliyun.com。 修改…

数据库逻辑结构设计-实体和实体间联系的转换、关系模式的优化

一、引言 如何将数据库概念结构设计的结果,即用E-R模型表示的概念模型转化为关系数据库模式。 E-R模型由实体、属性以及实体间的联系三个要素组成 将E-R模型转换为关系数据库模式,实际上就是要将实体及实体联系转换为相应的关系模式,转换…

【深度学习】基于深度离散潜在变量模型的变分推理

1.引言 1.1.讨论的目标 阅读并理解本文后,大家应能够: 掌握如何为具有离散潜在变量的模型设定参数在可行的情况下,使用精确的对数似然函数来估计参数利用神经变分推断方法来估计参数 1.2.导入相关软件包 # 导入PyTorch库,用于…

LLM vs SLM 大模型和小模型的对比

语言模型是能够生成自然人类语言的人工智能计算模型。这绝非易事。 这些模型被训练为概率机器学习模型——预测适合在短语序列中生成的单词的概率分布,试图模仿人类智能。语言模型在科学领域的重点有两个方面: 领悟情报的本质。 并将其本质体现为与真实…

Java学习十一—Java8特性之Stream流

一、Java8新特性简介 2014年3月18日,JDK8发布,提供了Lambda表达式支持、内置Nashorn JavaScript引擎支持、新的时间日期API、彻底移除HotSpot永久代。 ​ Java 8引入了许多令人兴奋的新特性,其中最引人注目的是Lambda表达式和Stream API。以…

十年磨一剑,华火电燃组合灶重磅问世,引领厨房新时代

十年磨一剑,华火研发团队经过不懈努力,成功将等离子电生明火技术与电陶炉红外线光波炉技术精妙融合,打造出的这款具有划时代是意义的电燃组合灶HH-SZQP60,终于在 2024 年6月震撼登场,该灶以其卓越的创新技术和独特的产…

day01-项目介绍及初始化-登录页

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 day01-项目介绍及初始化-登录页一、人力资源项目介绍1.1项目架构和解决方案主要模块解决的问题 二、拉取项目基础代码1.引入库2.升级core-js版本到3.25.5按照完整依…

一篇文章带你玩懂数据库的基础函数

数据库的函数 单行函数1.数据函数2.字符串函数3.时间函数4.流程函数 多行函数聚合函数 阅读指南: 本文章讲述了对于数据库的单行和多行函数,如果读者感兴趣,后续我们会更新高级的操作在我们的对于数据库教程的合集中,大家可以来很…

振弦采集仪在大型工程安全监测中的应用探索

振弦采集仪在大型工程安全监测中的应用探索 振弦采集仪是一种用于监测结构振动和变形的设备,它通过采集振弦信号来分析结构的动态特性。在大型工程安全监测中,振弦采集仪具有重要的应用价值,可以帮助工程师和监测人员实时了解结构的状况&…

红队内网攻防渗透:内网渗透之内网对抗:横向移动篇Kerberos委派安全非约束系约束系RBCD资源系Spooler利用

红队内网攻防渗透 1. 内网横向移动1.1 委派安全知识点1.1.1 域委派分类1.1.2 非约束委派1.1.2.1 利用场景1.1.2.2 复现配置:1.1.2.3 利用思路1:诱使域管理员访问机器1.1.2.3.1 利用过程:主动通讯1.1.2.3.2 利用过程:钓鱼1.1.2.4 利用思路2:强制结合打印机漏洞1.1.2.5 利用…

利用Linked SQL Server提权

点击星标,即时接收最新推文 本文选自《内网安全攻防:红队之路》 扫描二维码五折购书 利用Linked SQL Server提权 Linked SQL server是一个SQL Server数据库中的对象,它可以连接到另一个SQL Server或非SQL Server数据源(如Oracle&a…

Techviz:XR协作工作流程,重塑远程电话会议新形式

在当今快速发展的数字环境中,无缝远程协作的需求正在成为企业多部门协同工作的重中之重,尤其是对于制造业、建筑和设计等行业的专业人士而言,这一需求更加迫切。传统的远程电话会议协作形式存在着延滞性,已经渐渐跟不上当今快节奏…

脑洞爆裂,OLED透明屏与红酒柜相结合

当OLED透明屏与红酒柜相结合时,我们可以设想一个极具创新性和实用性的产品,将科技美学与品酒文化完美融合。以下是我为这种结合提出的一些创新设想: 透明展示与虚拟标签 透明展示:OLED透明屏能够直接安装在红酒柜的玻璃门或侧面&a…