初识 Embedding,为何大家都基于它搭建私人智能客服?

随着 AI 技术的发展,大家在日常使用过程中经常会碰到一些目前 GPT4 也无法解决的问题:

  • 无法获取个人私有数据信息,进行智能问答
  • 无法获取最新信息,LLM 模型训练都是都是有截止日期的
  • 无法定制化私有的专属模型,从而在某个领域内取得更好效果

基于以上问题 OpenAI 官方提供了两种不同私有化模型定制方式:Fine-Tuning(微调)、Embedding(嵌入)。

一、Fine-Tuning 与 Embedding 区别

两种方式信息概括如下:

  • Fine-Tuning(微调):在一个已经预训练好的模型的基础上,使用用户提供的数据进行进一步的训练,从而使模型更适合用户的特定应用场景。微调可以提高模型的质量、准确性和可靠性,以及降低请求的延迟和代价。微调需要用户准备和上传训练数据,以及选择合适的模型和参数。
  • Embedding(嵌入):指将文本或其他内容转换为数值向量的形式,从而可以计算内容之间的相似度或相关性。OpenAI 的 Embedding 模型可以将文本解析为 1536 个维度,每个维度代表一个概念或特征。用户可以通过 Embedding 模型来存储、检索或比较文本或其他内容。Embedding 不需要用户提供训练数据,也不需要选择模型和参数。

Fine-Tuning 微调训练的成本较高,且自身需要一定的模型训练经验和一定规模的数据集,否则微调出来的模型效果并不会很理想。所以更推崇使用 Embedding 方式对数据进行处理从而达到预期效果,比如目前市面上智能客服完全可以通过 Embedding 实现落地。

二、Embedding 详细分析

接下来我们就来重点聊聊 Embedding ,它的大致流程是:

  1. 将已有数据集维护成对应的向量数据库
  2. 当用户通过 Prompt 进行提问时,从向量数据库提取相似或相近的信息
  3. 将信息连同 Prompt 一起发送给 GPT 模型来生成结果

这样做有一个好处就是我们只需要将相关的数据发送给 ChatGPT 即可,相对比较节约 Token。

Embedding 将数据转成成连续向量空间的过程,我们并不需要去深入了解。所以我们从 Embedding 如何识别相似或关联性数据讲起。

1. 如何从向量数据库提取相关数据?

从上面的概述我们可以了解到一个重点是:Embedding 模型需要将数据解析为 1536 个维度,每个维度代表一个概念或特征

将一段文字转换成这么多个维度的数据,从向量数据库提取的过程中就是根据这些维度进行计算。

人类是如何辨别一个人,想象自己平时是如何认出谁是谁呢?我们都是通过外表容貌来认人的(如眼睛大小、鼻子大小、脸型、发型等等),对我们熟悉的人,我们的脑海中会记住他的五官、身材等关键信息。

映射到向量数据也是一样的道理,将数据的 1536 个维度认为是它的“五官”,当我们需要从向量数据库中提取数据时只需要找到“五官”相似的数据即可。

图片

以如上二维坐标进行举例,相似或有关联性的向量数据就会分布在坐标系中比较临近的位置(奥运会、亚运会、残奥会),而内容基本不相干的向量数据(北京地铁)在坐标系中就会离得比较远。

2. 使用 OpenAI 生成向量数据

通过 OpenAI 官网我们也可以看到,价格还是比较便宜的。使用量按每个输入令牌定价,收费为每1000个 tokens 大约0.0004美元。

图片

通过 OpenAI 的 Embedding 方法调用,看看返回数据啥样。

在这里插入图片描述

接口返回了该文本对应的 1536 个维度数据,相当于我们已经掌握了这份文本数据的“五官”信息了。

图片

3. 如何提取相似数据?

在上面的方法上使用余弦值来比较相似度,代码如下:

import openai
from sklearn.metrics.pairwise import cosine_similarity

openai.api_key = "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"

if __name__ == '__main__':
    evaluate_one_text = "奥运会"    
    evaluate_two_text = "亚运会"    
    evaluate_three_text = "北京地铁"    
    
    # 对数据进行 embedding    
    embeddings = openai.Embedding.create(    
        model="text-embedding-ada-002",        
        input=[evaluate_one_text, evaluate_two_text, evaluate_three_text],    
    )    
    
    evaluate_one = embeddings["data"][0]["embedding"]    
    evaluate_two = embeddings["data"][1]["embedding"]    
    evaluate_three = embeddings["data"][2]["embedding"]    
    
    print("奥运会&亚运会的余弦距离:" + format(cosine_similarity([evaluate_one], [evaluate_two])[0][0]))    
    print("奥运会&北京地铁的余弦距离:" + format(cosine_similarity([evaluate_one], [evaluate_three])[0][0]))    
    print("北京地铁&亚运会的余弦距离:" + format(cosine_similarity([evaluate_three], [evaluate_two])[0][0]))

结果如下:

奥运会&亚运会的余弦距离:0.9022809359592784
奥运会&北京地铁的余弦距离:0.7898007980212471
北京地铁&亚运会的余弦距离:0.7767229785942393

计算两个数据的相似度,我们可以使用余弦相似度(cosine similarity)的方法,即计算两个向量之间的夹角的余弦值。余弦相似度的范围是[-1, 1],其中 1 表示完全相同,0表示正向相关性,-1表示完全相反。

通过这样一个简单的案例,我们就可以知道 OpenAI 是如何从向量数据库中提取到相似或相关联的数据。

结尾

本文主要讲解了 Embedding 的一些基本概念,后续会更新如何基于 Embedding 转换私人数据搭建私人客服。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/749149.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

算法常见问题

1.c虚函数 虚函数是用来实现多态(polymorphism) 的一种机制。通过使用虚函数,可以在子类中重写父类中定义的方法,并且在运行时动态地确定要调用哪个方法。 在类定义中将一个成员函数声明为虚函数,需要使用 virtual 关键字进行修饰 。 通过指向…

山海相逢,因你而至!第九届全球边缘计算大会·深圳站圆满召开!

2024年6月22日,第九届全球边缘计算大会在深圳盛大开幕。本次盛会由边缘计算社区主办,并获得了EMQ、研华科技、华为等重量级单位的鼎力支持。大会汇聚了来自全球各地的业界精英,共同探讨边缘计算的前沿技术、应用趋势以及创新实践,…

Isaac Sim 9 物理(1)

使用Python USD API 来实现 Physics 。 以下内容中,大部分 Python 代码可以在 Physics Python 演示脚本文件中找到,本文仅作为个人学习笔记。 一.设置 USD Stage 和物理场景 Setting up a USD Stage and a Physics Scene USD Stage不知道怎么翻译&#…

docker 部署的 wordpress 接入阿里云短信服务 详细实操介绍

一、阿里云短信服务配置: 1、登录 阿里云短信服务 完成指引短信相关配置 2、创建RAM用户 并完成授权 出于安全及规范考虑 需通过RAM 用户来完成OponApl 接口调用,创建成功需完成短信接口(AliyunDysmsFullAccess、AliyunDysmsReadOnlyAccess…

【大模型】大模型微调方法总结(二)

1.Adapter Tuning 1.背景 2019年谷歌的研究人员首次在论文《Parameter-Efficient Transfer Learning for NLP》提出针对 BERT 的 PEFT微调方式,拉开了 PEFT 研究的序幕。他们指出,在面对特定的下游任务时,如果进行 Full-Fintuning&#xff0…

执行yum命令报错Could not resolve host: mirrors.cloud.aliyuncs.com; Unknown error

执行yum命令报错 [Errno 14] curl#6 - "Could not resolve host: mirrors.cloud.aliyuncs.com; Unknown error 修改图中所示两个文件: vim epel.repo vim CentOS-Base.repo 将所有的http://mirrors.cloud.aliyuncs.com 修改为http://mirrors.aliyun.com。 修改…

数据库逻辑结构设计-实体和实体间联系的转换、关系模式的优化

一、引言 如何将数据库概念结构设计的结果,即用E-R模型表示的概念模型转化为关系数据库模式。 E-R模型由实体、属性以及实体间的联系三个要素组成 将E-R模型转换为关系数据库模式,实际上就是要将实体及实体联系转换为相应的关系模式,转换…

【深度学习】基于深度离散潜在变量模型的变分推理

1.引言 1.1.讨论的目标 阅读并理解本文后,大家应能够: 掌握如何为具有离散潜在变量的模型设定参数在可行的情况下,使用精确的对数似然函数来估计参数利用神经变分推断方法来估计参数 1.2.导入相关软件包 # 导入PyTorch库,用于…

LLM vs SLM 大模型和小模型的对比

语言模型是能够生成自然人类语言的人工智能计算模型。这绝非易事。 这些模型被训练为概率机器学习模型——预测适合在短语序列中生成的单词的概率分布,试图模仿人类智能。语言模型在科学领域的重点有两个方面: 领悟情报的本质。 并将其本质体现为与真实…

Java学习十一—Java8特性之Stream流

一、Java8新特性简介 2014年3月18日,JDK8发布,提供了Lambda表达式支持、内置Nashorn JavaScript引擎支持、新的时间日期API、彻底移除HotSpot永久代。 ​ Java 8引入了许多令人兴奋的新特性,其中最引人注目的是Lambda表达式和Stream API。以…

十年磨一剑,华火电燃组合灶重磅问世,引领厨房新时代

十年磨一剑,华火研发团队经过不懈努力,成功将等离子电生明火技术与电陶炉红外线光波炉技术精妙融合,打造出的这款具有划时代是意义的电燃组合灶HH-SZQP60,终于在 2024 年6月震撼登场,该灶以其卓越的创新技术和独特的产…

day01-项目介绍及初始化-登录页

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 day01-项目介绍及初始化-登录页一、人力资源项目介绍1.1项目架构和解决方案主要模块解决的问题 二、拉取项目基础代码1.引入库2.升级core-js版本到3.25.5按照完整依…

一篇文章带你玩懂数据库的基础函数

数据库的函数 单行函数1.数据函数2.字符串函数3.时间函数4.流程函数 多行函数聚合函数 阅读指南: 本文章讲述了对于数据库的单行和多行函数,如果读者感兴趣,后续我们会更新高级的操作在我们的对于数据库教程的合集中,大家可以来很…

振弦采集仪在大型工程安全监测中的应用探索

振弦采集仪在大型工程安全监测中的应用探索 振弦采集仪是一种用于监测结构振动和变形的设备,它通过采集振弦信号来分析结构的动态特性。在大型工程安全监测中,振弦采集仪具有重要的应用价值,可以帮助工程师和监测人员实时了解结构的状况&…

红队内网攻防渗透:内网渗透之内网对抗:横向移动篇Kerberos委派安全非约束系约束系RBCD资源系Spooler利用

红队内网攻防渗透 1. 内网横向移动1.1 委派安全知识点1.1.1 域委派分类1.1.2 非约束委派1.1.2.1 利用场景1.1.2.2 复现配置:1.1.2.3 利用思路1:诱使域管理员访问机器1.1.2.3.1 利用过程:主动通讯1.1.2.3.2 利用过程:钓鱼1.1.2.4 利用思路2:强制结合打印机漏洞1.1.2.5 利用…

利用Linked SQL Server提权

点击星标,即时接收最新推文 本文选自《内网安全攻防:红队之路》 扫描二维码五折购书 利用Linked SQL Server提权 Linked SQL server是一个SQL Server数据库中的对象,它可以连接到另一个SQL Server或非SQL Server数据源(如Oracle&a…

Techviz:XR协作工作流程,重塑远程电话会议新形式

在当今快速发展的数字环境中,无缝远程协作的需求正在成为企业多部门协同工作的重中之重,尤其是对于制造业、建筑和设计等行业的专业人士而言,这一需求更加迫切。传统的远程电话会议协作形式存在着延滞性,已经渐渐跟不上当今快节奏…

脑洞爆裂,OLED透明屏与红酒柜相结合

当OLED透明屏与红酒柜相结合时,我们可以设想一个极具创新性和实用性的产品,将科技美学与品酒文化完美融合。以下是我为这种结合提出的一些创新设想: 透明展示与虚拟标签 透明展示:OLED透明屏能够直接安装在红酒柜的玻璃门或侧面&a…

面试突击指南:Java基础面试题3

1.介绍下进程和线程的关系 进程:一个独立的正在执行的程序。 线程:一个进程的最基本的执行单位,执行路径。 多进程:在操作系统中,同时运行多个程序。 多进程的好处:可以充分利用CPU,提高CPU的使用率。 多线程:在同一个进程(应用程序)中同时执行多个线程。 多线程…

Redis 7.x 系列【9】数据类型之自动排重集合(Set)

有道无术,术尚可求,有术无道,止于术。 本系列Redis 版本 7.2.5 源码地址:https://gitee.com/pearl-organization/study-redis-demo 文章目录 1. 前言2. 常用命令2.1 SADD2.2 SCARD2.3 SISMEMBER2.4 SREM2.5 SSCAN2.6 SDIFF2.7 SU…