深度神经网络——什么是小样本学习?

引言

小样本学习是指使用极少量的训练数据来开发人工智能模型的各种算法和技术。小样本学习致力于让人工智能模型在接触相对较少的训练实例后识别和分类新数据。小样本训练与训练机器学习模型的传统方法形成鲜明对比,传统方法通常使用大量训练数据。小样本学习是 主要用于计算机视觉。

为了对小样本学习有更好的直觉,让我们更详细地研究这个概念。 我们将研究小样本学习背后的动机和概念,探索一些不同类型的小样本学习,并涵盖高层小样本学习中使用的一些模型。 最后,我们将研究一些小样本学习的应用程序。

“小样本学习”描述了训练机器学习模型的实践 用最少的数据量。 通常,机器学习模型是根据大量数据进行训练的,数据越大越好。 然而,由于几个不同的原因,小样本学习是一个重要的机器学习概念。

使用小样本学习的原因之一是它可以大大减少训练机器学习模型所需的数据量,从而减少标记大型数据集所需的时间。 同样,在使用通用数据集创建不同样本时,小样本学习减少了为各种任务添加特定特征的需要。 理想情况下,少量学习可以使模型更加稳健,并且能够基于较少的数据识别对象,从而创建更通用的模型,而不是标准的高度专业化模型。

小样本学习最常用于计算机视觉领域,因为计算机视觉问题的本质需要大量数据或灵活的模型。

子类别

“小样本”学习实际上只是一种使用很少训练样本的学习类型。 由于您仅使用“一些”训练示例,因此少数样本学习的子类别也涉及使用最少量的数据进行训练。 “一次性”学习是另一种类型的模型训练,涉及教导模型在仅看到该物体的一张图像后识别该物体。 一次性学习和几次学习所使用的一般策略是相同的。 请注意,术语“小样本”学习可以用作总括术语来描述使用很少数据训练模型的任何情况。

小样本学习的方法

大多数小样本学习方法可以分为三类之一:数据级方法、参数级方法和基于度量的方法。

数据级方法

小样本学习的数据级方法在概念上非常简单。 为了在没有足够的训练数据时训练模型,您可以获取更多的训练数据。 数据科学家可以使用多种技术来增加他们拥有的训练数据量。

类似的训练数据可以支持您正在训练分类器的确切目标数据。 例如,如果您正在训练分类器识别特定种类的狗,但缺乏您尝试分类的特定物种的许多图像,则可以包含许多狗的图像,这将帮助分类器确定构成狗的一般特征。

数据增强可以为分类器创建更多训练数据。 这通常涉及对现有训练数据应用转换,例如旋转现有图像,以便分类器从不同角度检查图像。 GAN 还可以根据从您拥有的少数真实训练数据示例中学到的知识来生成新的训练示例。
在这里插入图片描述

参数级方法

元学习

小样本学习的一种参数级方法涉及使用一种称为“元学习”。 元学习涉及 教模型如何学习 哪些特征在机器学习任务中很重要。 这可以通过创建一种方法来调节如何探索模型的参数空间来实现。

元学习使用两种不同的模型:教师模型和学生模型。 “教师”模型和“学生”模型。 教师模型学习如何封装参数空间,而学生算法学习如何识别和分类数据集中的实际项目。 换句话说,教师模型学习如何优化模型,而学生模型学习如何分类。 教师模型的输出用于训练学生模型,向学生模型展示如何协商因训练数据太少而产生的大参数空间。 因此,元学习中的“元”。

小样本学习模型的主要问题之一是它们很容易在训练数据上过度拟合,因为它们经常具有高维空间。 限制模型的参数空间解决了这个问题,虽然可以通过应用正则化技术和选择适当的损失函数来实现,但使用教师算法可以显着提高少数样本模型的性能。

几次学习分类器模型(学生模型)将努力基于其提供的少量训练数据进行泛化,并且通过教师模型引导其通过高维参数空间,可以提高其准确性。 这种通用架构被称为“基于梯度”的元学习器。

训练基于梯度的元学习器的完整过程如下:

  1. 创建基础学习者(教师)模型
  2. 在支持集上训练基础学习器模型
  3. 让基础学习器返回查询集的预测
  4. 根据分类误差产生的损失训练元学习者(学生)

元学习的变体

与模型无关的元学习 是一种用于增强我们上面介绍的基于梯度的基本元学习技术的方法。

正如我们上面所讨论的,基于梯度的元学习器使用教师模型获得的先验经验 来微调自己 和 提供更准确的预测 对于少量的训练数据。 然而,从随机初始化的参数开始意味着模型仍然有可能过度拟合数据。 为了避免这种情况,通过限制教师模型/基础模型的影响来创建“模型无关”元学习器。 学生模型不是直接根据教师模型做出的预测的损失来训练学生模型,而是根据自己的预测损失进行训练。

对于训练与模型无关的元学习器的每一集:

  1. 创建当前元学习器模型的副本。
  2. 副本在基础模型/教师模型的帮助下进行训练。
  3. 该副本返回训练数据的预测。
  4. 计算损失用于更新元学习器。

度量学习

设计几次学习模型的度量学习方法 通常涉及 此 使用基本距离度量 对数据集中的样本进行比较。 余弦距离等度量学习算法用于根据查询样本与支持样本的相似性对查询样本进行分类。 对于图像分类器来说,这意味着仅根据表面特征的相似性对图像进行分类。 选择图像支持集并将其转换为嵌入向量后,对查询集进行同样的操作,然后比较两个向量的值,分类器选择与向量化查询集值最接近的类。

更先进的基于度量的解决方案是“原型网络”。 原型网络将聚类模型与上述基于度量的分类相结合,将数据点聚类在一起。 与 K 均值聚类一样,聚类的质心是针对支持集中的类和查询集中的类计算的。 然后应用欧几里德距离度量来确定查询集和支持集质心之间的差异,将查询集分配给更接近的支持集类。

大多数其他小样本学习方法只是上述核心技术的变体。

小样本学习的应用

小样本学习在数据科学的许多不同子领域都有应用,例如计算机视觉、自然语言处理、机器人、医疗保健和信号处理。

计算机视觉领域的小样本学习应用包括高效的字符识别、图像分类、对象识别、对象跟踪、运动预测和动作定位。 用于小样本学习的自然语言处理应用包括翻译、句子完成、用户意图分类、情感分析和多标签文本分类。 小样本学习可用于机器人领域,帮助机器人通过几次演示来学习任务,让机器人学习如何执行动作、移动和导航周围的世界。 小样本药物发现是人工智能医疗保健的一个新兴领域。 最后,小样本学习可用于声学信号处理,这是一种分析声音数据的过程,让人工智能系统仅基于几个用户样本或从一个用户到另一个用户的语音转换来克隆语音。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/732440.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

DAY10-力扣刷题

1.最后一个单词的长度(简单) 58. 最后一个单词的长度 - 力扣(LeetCode) 给你一个字符串 s,由若干单词组成,单词前后用一些空格字符隔开。返回字符串中 最后一个 单词的长度。 单词 是指仅由字母组成、不包含任何空格字符的最大子…

机器学习python实践——由特征选择引发的关于卡方检验的一些个人思考

最近在用python进行机器学习实践,在做到特征选择这一部分时,对于SelectPercentile和SelectKBest方法有些不理解,所以去了查看了帮助文档,但是在帮助文档的例子中出现了"chi2",没接触过,看过去就更…

MySQL存储管理(一):删数据

从表中删除数据 从表中删除数据,也即是delete过程。 什么是表空间 表空间可以看做是InnoDB存储引擎逻辑结构的最高层,所有的数据都存放在表空间中。默认情况下,InnoDB存储引擎有一个共享表空间idbdata1,即所有数据都存放在这个表…

20.Cargo和Crates.io

标题 一、采用发布配置自定义构建1.1 默认配置1.2 修改配置项 二、将crate发布到Crates.io2.1 编写文档注释2.2 常用(文档注释)部分2.3 文档注释作用测试2.4 为包含注释的项添加文档注释2.5 使用pub use导出公有API2.6 创建Crates.io账号2.7 发布2.8 版本…

基于STM8系列单片机驱动LCD12864液晶程序

1)单片机/ARM硬件设计小知识,分享给将要学习或者正在学习单片机/ARM开发的同学。 2)内容属于原创,若转载,请说明出处。 3)提供相关问题有偿答疑和支持。 LCD12864支持串行和并行的通信传输方式&#xff…

NeRF从入门到放弃3: EmerNeRF

https://github.com/NVlabs/EmerNeRF 该方法是Nvidia提出的,其亮点是不需要额外的2D、3Dbox先验,可以自动解耦动静field。 核心思想: 1. 动、静filed都用hash grid编码,动态filed比静态多了时间t,静态的hash编码输入是…

C语言笔试题:实现把一个无符号整型数字的二进制序列反序后输出

目录 题目 实例 方法一:直接交换 方法二:间接交换 拓展 题目 编写一个函数,将一个无符号整数的所有位逆序(在32位机器下) 实例 例如有一个无符号整数 unsigned int num 32; unsigned int 在32位系统中占4个字…

如何选择优质智慧公厕系统厂家?@光明源

随着智慧城市建设的推进,智慧公厕系统成为提升城市公共服务水平的重要一环。选择一家优质的智慧公厕系统厂家不仅能确保设备的先进性和可靠性,还能提升用户体验和管理效率。以下是选择优质智慧公厕系统厂家的关键要素。 1. 厂家资质和信誉 1.1 资质认证…

VS C++常用错误与解决方法

无法找到 v143 的生成工具(平台工具集 “v143”) 若要使用 v143 生成工具进行生成,请安装 v143 生成工具。或者,可以升级到当前 Visual Studio 工具,方式是通过选择“项目”菜单或右键单击该解决方案,然后选择“重定解决方案目标…

外星人Alienware m18R1 原厂Windows11系统

装后恢复到您开箱的体验界面,包括所有原机所有驱动AWCC、Mydell、office、mcafee等所有预装软件。 最适合您电脑的系统,经厂家手调试最佳状态,性能与功耗直接拉满,体验最原汁原味的系统。 原厂系统下载网址:http://w…

绝对值不等式——AcWing 104. 货仓选址

绝对值不等式 定义 与数学中的绝对值不等式定义一致,即含有绝对值符号的不等式。 运用情况 在一些需要根据数值与特定值的距离关系来进行判断和处理的算法中。用于对数据范围进行约束和界定。 注意事项 确保对绝对值的处理正确,尤其是在复杂的逻辑…

基于chatgpt-on-wechat搭建个人知识库微信群聊机器人

前言 啊,最近在别人微信群里看到一个聊天机器人,感觉挺好玩的。之前GPT刚出来的时候就知道有人把聊天机器人接入到微信或者QQ中来增加互动,但是当时没想那个想法。 很久没关注这块了,发现现在可以使用大模型知识库的方式来打造自…

【面试干货】Hashtable 与 HashMap 的区别

【面试干货】Hashtable 与 HashMap 的区别 1、线程安全性2、对null值的处理3、遍历方式4、遍历示例5、总结 💖The Begin💖点点关注,收藏不迷路💖 在Java中,Hashtable和HashMap都是基于哈希表实现的Map接口。然而&#…

[Django学习]前端+后端两种方式处理图片流数据

方式1:数据库存放图片地址,图片存放在Django项目文件中 1.首先,我们现在models.py文件中定义模型来存放该图片数据,前端传来的数据都会存放在Django项目文件里的images文件夹下 from django.db import modelsclass Image(models.Model):title models.C…

Windows10任务栏卡顿解决方案

一、重新启动任务资源管理器 右键底部任务栏选择“任务管理器”;按快捷键“CtrlShiftEsc”;搜索框搜索“任务管理器”并单击“打开”;“WinX”打开开始菜单附属菜单,在列表中选择“任务管理器” ;按下“ctrlaltdelete”…

24年安克创新社招入职自适应能力cata测评真题分享北森测评高频题库

第一部分:安克创新自适应能力cata测评 感谢您关注安克创新社会招聘,期待与您一起弘扬中国智造之美。 为对您做出全面的评估,现诚邀您参加我们的在线测评。 测评名称:社招-安克创新自适应能力cata测评 第二部分:安克…

容器之笔记本构件演示

代码&#xff1a; #include <gtk-2.0/gtk/gtk.h> #include <glib-2.0/glib.h> #include <gtk-2.0/gdk/gdkkeysyms.h> #include <stdio.h>void rotate_book(GtkButton *button, GtkNotebook *notebook) {gtk_notebook_set_tab_pos(notebook, (notebook…

Linux驱动开发(三)--新字符设备驱动开发 LED驱动开发升级

1、新字符设备驱动原理 使用 register_chrdev 函数注册字符设备的时候只需要给定一个主设备号即可&#xff0c;但是这样会 带来两个问题 需要我们事先确定好哪些主设备号没有使用 会将一个主设备号下的所有次设备号都使用掉&#xff0c;比如现在设置 LED 这个主设备号为200&…

这周,接连两位程序员猝死...

这周接连发生了两起不幸的事。俩位程序员去世的消息&#xff0c;深感悲伤和惋惜。 6月17号下午&#xff0c;一位负责研发的女员工在虾皮研发中心办公室猝死&#xff0c;年仅 30 岁。 官方通告&#xff1a; 同一天&#xff0c;另一位科大讯飞的高级测试工程师在家突发不适离世…

UDS服务——TransferData (0x36)

诊断协议那些事儿 诊断协议那些事儿专栏系列文章,本文介绍TransferData (0x36)—— 数据传输,用于下载/上传数据时用的,数据的传输方向由不同的服务控制:0x34服务表示下载,0x35服务表示上传。通过阅读本文,希望能对你有所帮助。 文章目录 诊断协议那些事儿传输数据服务…