概率论与数理统计期末复习

概率论常考知识点汇总

请添加图片描述
请添加图片描述

请添加图片描述请添加图片描述请添加图片描述
请添加图片描述请添加图片描述

总括

1. 基础概率论

  • 概率定义:理解概率是事件发生的可能性度量,范围从0(不可能)到1(必然发生)。
  • 概率公理:掌握概率的三大公理,即非负性、规范性和可加性。
  • 条件概率:P(A|B)表示在事件B已发生的条件下,事件A发生的概率。
  • 贝叶斯定理:用于计算在已知某些证据或数据的条件下,某个假设为真的概率。
  • 独立事件与相关事件:理解独立事件的概率乘法规则及相关事件的处理方法。

2. 随机变量及其分布

  • 离散随机变量:了解伯努利分布、二项分布、泊松分布等,以及它们的应用场景。
  • 连续随机变量:熟悉均匀分布、正态分布(高斯分布)、指数分布等,掌握其概率密度函数(PDF)和累积分布函数(CDF)。
  • 联合分布与边缘分布:理解多维随机变量的联合分布,及其边缘分布的计算方法。
  • 条件分布与协方差:学习如何基于给定条件下一个随机变量的分布,以及随机变量间的相互依赖关系。

3. 数理统计基础

  • 点估计:了解均值、中位数、众数作为参数的估计方法,以及最大似然估计和最小二乘法。
  • 区间估计:掌握置信区间的概念,理解如何构建参数的置信区间,特别是正态分布情况下的Z检验和t检验。
  • 假设检验:熟悉原假设与备择假设,掌握单样本和双样本检验,包括显著性水平、p值的理解与应用。
  • 方差分析(ANOVA):理解方差分析的基本原理,用于比较两个以上样本均值是否存在显著差异。

4. 高级主题(根据兴趣选择)

  • 贝叶斯统计:深入理解贝叶斯分析,包括先验概率、后验概率和贝叶斯推断。
  • 大数定律与中心极限定理:掌握这两个定理对于统计推断的重要意义。
  • 非参数统计:了解当数据不符合正态分布或其他特定分布时,使用如卡方检验、秩和检验等非参数方法。
  • 时间序列分析:研究随时间变化的数据序列,涉及自回归模型(AR)、移动平均模型(MA)及它们的组合ARIMA等。

基本概率公式

在概率论中,事件之间的关系及其运算主要涉及交集、并集、补事件以及条件概率,这些是理解和计算复合事件概率的基础。下面详细解释这些概念:

1. 交集 (Intersection)

  • 定义:如果A和B是两个事件,那么A∩B表示事件A和事件B同时发生的事件。即A和B的交集包含了所有既属于A又属于B的样本点。
  • 概率运算:事件A和B同时发生的概率,记作P(A∩B),等于各自发生的概率的乘积,仅当A和B是独立事件时,即P(A∩B) = P(A) * P(B)。若A和B不独立,则需要根据具体情况计算。

2. 并集 (Union)

  • 定义:事件A和B的并集,记作A∪B,包含所有至少属于A或B(或两者都属于)的样本点。

  • 概率运算

    :事件A或B至少有一个发生的概率,记作P(A∪B),可以通过以下公式计算:

    𝑃(𝐴∪𝐵)=𝑃(𝐴)+𝑃(𝐵)−𝑃(𝐴∩𝐵)P(A∪B)=P(A)+P(B)−P(A∩B)

    这里减去P(A∩B)是为了避免A和B共同部分被重复计算。

3. 补事件 (Complement)

  • 定义:对于任意事件A,它的补事件记作A’或𝐴ˉAˉ,表示A不发生的事件。
  • 概率运算:一个事件与其补事件的概率之和等于1,即P(A’) = 1 - P(A)。补事件的概念简化了某些问题的处理,特别是在计算“至少”或“至多”这类问题时。

4. 条件概率 (Conditional Probability)

  • 定义:在事件B已经发生的条件下,事件A发生的概率,记作P(A|B)。

  • 计算公式

    𝑃(𝐴∣𝐵)=𝑃(𝐴∩𝐵)𝑃(𝐵)P(A∣B)=P(B)P(A∩B)

    只有当P(B) > 0时,上述公式才有意义。

5. 乘法法则 (Multiplication Rule)

  • 用于计算两个事件同时发生的概率,特别地,它也关联条件概率和无条件概率的关系:

    𝑃(𝐴∩𝐵)=𝑃(𝐴)⋅𝑃(𝐵∣𝐴)=𝑃(𝐵)⋅𝑃(𝐴∣𝐵)P(A∩B)=P(A)⋅P(B∣A)=P(B)⋅P(A∣B)

    这表明可以从不同的角度理解两个事件同时发生的概率

随机变量

随机变量

定义:随机变量是将随机试验的结果与实数建立对应关系的函数。它可以分为两种类型:

  • 离散随机变量:取值为有限个或可数无限个确定值的随机变量,如抛掷一枚骰子得到的点数。
  • 连续随机变量:取值可以在某个区间内取任何值(理论上无限多)的随机变量,如测量一个人的身高。

分布函数

定义:随机变量 𝑋X 的分布函数(Cumulative Distribution Function, CDF),记作 𝐹(𝑥)F(x),定义为随机变量 𝑋X 取值小于或等于 𝑥x 的概率。形式上,对于任意实数 𝑥x,有:

𝐹(𝑥)=𝑃(𝑋≤𝑥)F(x)=P(X≤x)

性质

  1. 单调性:分布函数 𝐹(𝑥)F(x) 是单调不减的,即如果 𝑥1<𝑥2x1<x2,则 𝐹(𝑥1)≤𝐹(𝑥2)F(x1)≤F(x2)。
  2. 右连续性:𝐹(𝑥)F(x) 在每一个点 𝑥x 处都是右连续的,意味着 𝐹(𝑥)F(x) 在 𝑥x 的右侧极限存在,并等于 𝐹(𝑥)F(x) 在 𝑥x 处的值。
  3. 边界条件:分布函数在 −∞−∞ 处为 0,在 +∞+∞ 处为 1,即 𝐹(−∞)=0F(−∞)=0,𝐹(+∞)=1F(+∞)=1。
  4. 概率计算:对于任意两个实数 𝑎a 和 𝑏b,若 𝑎<𝑏a<b,则随机变量 𝑋X 落在区间 (𝑎,𝑏](a,b] 内的概率为 𝑃(𝑎<𝑋≤𝑏)=𝐹(𝑏)−𝐹(𝑎)P(a<X≤b)=F(b)−F(a)。

分布函数的分类

  • 离散随机变量的分布函数:通常是阶梯函数,每一步的跳跃高度代表相应值的概率质量。
  • 连续随机变量的分布函数:对于连续型随机变量,分布函数是连续的,而概率密度函数 𝑓(𝑥)f(x) 与分布函数的关系为 𝐹′(𝑥)=𝑓(𝑥)F′(x)=f(x) 在 𝑓(𝑥)f(x) 连续的地方成立,即分布函数的导数(在定义的地方)给出了概率密度。

离散型概率以及分布

离散型概率分布描述的是离散随机变量取不同值的概率。离散随机变量只能取有限个或可数无限个值,每个值都有一个明确的概率与之对应。下面是几个典型的离散型概率分布及其特征:

1. 伯努利分布 (Bernoulli Distribution)

  • 定义:伯努利试验是指只有两种可能结果的试验,通常称为“成功”和“失败”,且每次试验这两种结果的概率保持不变。设成功的概率为 𝑝p,失败的概率为 1−𝑝1−p,则一个伯努利随机变量 𝑋X 取值为1(成功)的概率为 𝑝p,取值为0(失败)的概率为 1−𝑝1−p。
  • 概率质量函数 (PMF):𝑃(𝑋=𝑘)=𝑝𝑘(1−𝑝)1−𝑘P(X=k)=pk(1−p)1−k,其中 𝑘=0,1k=0,1。

2. 二项分布 (Binomial Distribution)

  • 定义:在一系列独立的伯努利试验中,成功次数的分布称为二项分布。如果进行了 𝑛n 次独立的伯努利试验,每次试验成功的概率为 𝑝p,则在这些试验中恰好成功 𝑘k 次的概率服从二项分布。
  • PMF:𝑃(𝑋=𝑘)=(𝑛𝑘)𝑝𝑘(1−𝑝)𝑛−𝑘P(X=k)=(kn)pk(1−p)n−k,其中 (𝑛𝑘)(kn) 是组合数,表示从 𝑛n 个不同元素中取出 𝑘k 个元素的组合方式数量。

3. 泊松分布 (Poisson Distribution)

  • 定义:泊松分布常用来描述在一定时间或空间区域内,稀有事件发生次数的概率分布。如果平均每单位时间(或空间)内事件发生的次数为 𝜆λ,则在任意时间(或空间)区间内事件发生 𝑘k 次的概率遵循泊松分布。
  • PMF:𝑃(𝑋=𝑘)=𝜆𝑘𝑒−𝜆𝑘!P(X=k)=k!λke−λ,其中 𝜆λ 是平均事件数,𝑒e 是自然对数的底。

4. 几何分布 (Geometric Distribution)

  • 定义:几何分布描述的是首次成功前进行试验的次数。在一个伯努利试验序列中,直到首次成功所需试验的次数 𝑋X 服从几何分布,每次试验成功的概率为 𝑝p。
  • PMF:𝑃(𝑋=𝑘)=(1−𝑝)𝑘−1𝑝P(X=k)=(1−p)k−1p,𝑘=1,2,3,…k=1,2,3,…。

5. 负二项分布 (Negative Binomial Distribution)

  • 定义:负二项分布描述的是在第 𝑟r 次成功之前已经发生了 𝑘k 次失败的概率分布。它扩展了几何分布,考虑了达到固定成功次数前的失败次数。
  • PMF:𝑃(𝑋=𝑘)=(𝑘+𝑟−1𝑘)𝑝𝑟(1−𝑝)𝑘P(X=k)=(kk+r−1)pr(1−p)k,其中 𝑟r 是预先设定的成功次数。

组合公式

组合公式是用来计算从n个不同元素中不重复地选择r个元素的方法数,记作 𝐶(𝑛,𝑟)C(n,r) 或者 “𝑛n 选 𝑟r”,也称为二项式系数。公式如下:

𝐶(𝑛,𝑟)=𝑛!𝑟!(𝑛−𝑟)!C(n,r)=r!(n−r)!n!

其中,

  • 𝑛!n! 表示n的阶乘,即 𝑛×(𝑛−1)×(𝑛−2)×⋯×1n×(n−1)×(n−2)×⋯×1,
  • 𝑟!r! 是r的阶乘,
  • 𝑛−𝑟n−r 代表剩余未被选择的元素数量,
  • "!"符号表示阶乘运算。

当 𝑛<𝑟n<r 时,𝐶(𝑛,𝑟)C(n,r) 定义为0,因为无法从较少的元素中选择更多的元素。

这个公式在概率论、统计学、组合数学以及日常生活中解决排列组合问题时非常有用。

连续型随机变量

连续性随机变量是概率论中的一种重要概念,它用来描述那些可能取值无法逐一列举,而是在某个区间内可以取任意实数值的随机变量。与离散型随机变量不同,连续型随机变量在数轴上的取值是连续的,其概率分布需要用概率密度函数(probability density function, PDF)来描述,而不是概率质量函数。以下是连续性随机变量的详细解析:

请添加图片描述请添加图片描述

常见的连续型随机变量的及其分布

请添加图片描述

离散型随机变量函数的分布

离散型随机变量函数的分布是指如果有一个离散型随机变量 𝑋X,其概率质量函数(probability mass function, PMF)为 𝑃(𝑋=𝑥𝑖)=𝑝𝑖P(X=xi)=pi,对于 𝑋X 的某个函数 𝑌=𝑔(𝑋)Y=g(X),我们想要找到 𝑌Y 的分布,即求解 𝑌Y 的概率质量函数 𝑃(𝑌=𝑦𝑗)P(Y=yj)。

处理离散型随机变量函数分布的一般步骤如下:

  1. 确定 𝑌Y 的可能值:首先需要明确通过函数 𝑔g 转换后,𝑌Y 可能取到的所有值。这通常需要考虑 𝑋X 的所有可能取值,并应用 𝑔g 函数。
  2. 计算每个 𝑦𝑗yj 的概率:对于 𝑌Y 的每一个可能值 𝑦𝑗yj,需要找出所有能使 𝑔(𝑋)=𝑦𝑗g(X)=yj 的 𝑋X 的值集合 𝑆𝑗Sj,然后将这些 𝑋X 值对应的概率相加来得到 𝑃(𝑌=𝑦𝑗)P(Y=yj)。

𝑃(𝑌=𝑦𝑗)=∑𝑥𝑖∈𝑆𝑗𝑃(𝑋=𝑥𝑖)P(Y=yj)=∑xi∈SjP(X=xi)

这里,𝑆𝑗Sj 是使得 𝑔(𝑥𝑖)=𝑦𝑗g(xi)=yj 成立的所有 𝑥𝑖xi 的集合。

  1. 特殊情况处理:如果函数 𝑔g 导致某些 𝑌Y 的值没有对应的 𝑋X 值(即 𝑔g 不是满射),则那些 𝑌Y 的值的概率为0。反之,如果 𝑔g 将多个 𝑋X 映射到同一个 𝑌Y 值,则需要累加这些 𝑋X 值的概率。

举例说明:

假设 𝑋X 是一个离散型随机变量,取值为 {1, 2, 3},相应的概率分别为 1331。考虑函数 𝑌=𝑔(𝑋)=𝑋2Y=g(X)=X2。

  • 确定 𝑌Y 的可能值:应用 𝑔g 后,𝑌Y 的可能值为 {1, 4, 9}。
  • 计算每个 𝑦𝑗yj 的概率
    • 对于 𝑌=1Y=1,只有当 𝑋=1X=1 时成立,因此 𝑃(𝑌=1)=𝑃(𝑋=1)=13P(Y=1)=P(X=1)=31。
    • 对于 𝑌=4Y=4,只有当 𝑋=2X=2 时成立,所以 𝑃(𝑌=4)=𝑃(𝑋=2)=13P(Y=4)=P(X=2)=31。
    • 对于 𝑌=9Y=9,只有当 𝑋=3X=3 时成立,故 𝑃(𝑌=9)=𝑃(𝑋=3)=13P(Y=9)=P(X=3)=31。

最终,我们得到了 𝑌Y 的概率质量函数 𝑃(𝑌=1)=13P(Y=1)=31, 𝑃(𝑌=4)=13P(Y=4)=31, 𝑃(𝑌=9)=13P(Y=9)=31,这表明 𝑌Y 也是一个均匀分布的离散型随机变量。

二维连续型随机变量及其分布

二维连续性随机变量指的是由两个连续随机变量构成的随机向量,它们可以同时描述两个相互关联的连续随机现象。二维连续性随机变量的联合分布由联合概率密度函数(Joint Probability Density Function, JPDF)来描述,而边缘分布则描述了每个变量单独的分布情况。以下是二维连续性随机变量及其分布的详细说明:
请添加图片描述

请添加图片描述

协方差

请添加图片描述

计算协方差

计算协方差的具体步骤可以通过一个简单的例子来说明。假设我们有一组关于两个变量 𝑋X 和 𝑌Y 的数据对,分别是:

𝑋X𝑌Y
24
46
68
810

首先,我们计算每个变量的平均值(均值):

𝐸[𝑋]=2+4+6+84=204=5E[X]=42+4+6+8=420=5𝐸[𝑌]=4+6+8+104=284=7E[Y]=44+6+8+10=428=7

接下来,我们使用样本协方差的公式来计算协方差:

𝐶𝑜𝑣^(𝑋,𝑌)=1𝑛−1∑𝑖=1𝑛(𝑥𝑖−𝑥‾)(𝑦𝑖−𝑦‾)Cov(X,Y)=n−11∑i=1n(xi−x)(yi−y)

其中 𝑛=4n=4 是样本量,𝑥‾=5x=5 是 𝑋X 的均值,𝑦‾=7y=7 是 𝑌Y 的均值。现在,我们计算每一项并求和:

  • 对于第一对数据(2, 4):(2−5)(4−7)=(−3)(−3)=9(2−5)(4−7)=(−3)(−3)=9
  • 对于第二对数据(4, 6):(4−5)(6−7)=(−1)(−1)=1(4−5)(6−7)=(−1)(−1)=1
  • 对于第三对数据(6, 8):(6−5)(8−7)=(1)(1)=1(6−5)(8−7)=(1)(1)=1
  • 对于第四对数据(8, 10):(8−5)(10−7)=(3)(3)=9(8−5)(10−7)=(3)(3)=9

现在,将这些乘积相加并应用公式:

𝐶𝑜𝑣^(𝑋,𝑌)=14−1×(9+1+1+9)=13×20=203Cov(X,Y)=4−11×(9+1+1+9)=31×20=320

因此,变量 𝑋X 和 𝑌Y 之间的样本协方差大约为 6.676.67。这个正值表明 𝑋X 和 𝑌Y 之间存在正相关关系,即随着 𝑋X 的增加,𝑌Y 也倾向于增加。
请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/729296.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

使用 cx_Oracle 在 Oracle 中等待记录并执行操作

问题背景&#xff1a; 在第一个 Python 项目中&#xff0c;需要等待记录被插入 Oracle 表中&#xff0c;一旦记录存在&#xff0c;就调用 Python 函数。目前使用 cx_Oracle 库&#xff0c;采用一种无限循环的方式来查询表。如果记录存在&#xff0c;就调用函数&#xff0c;然后…

分类预测 | ZOA-PCNN-AT-SVM斑马优化并行卷积-支持向量机融合注意力机制的故障识别

分类预测 | ZOA-PCNN-AT-SVM斑马优化并行卷积-支持向量机融合注意力机制的故障识别 目录 分类预测 | ZOA-PCNN-AT-SVM斑马优化并行卷积-支持向量机融合注意力机制的故障识别分类效果基本描述程序设计参考资料 分类效果 基本描述 1.ZOA-PCNN-AT-SVM斑马优化并行卷积-支持向量机融…

Linux【实操篇-文件目录类命令】

05【实操篇-文件目录类命令】 1.pwd 显示当前工作目录的绝对路径 pwd:print working directory 打印工作目录 到现在为止&#xff0c;我们还不知道自己在系统的什么地方。在浏览器上&#xff0c;我们能够通过导航栏上的url&#xff0c;了解到自己在互联网上的具体坐标。相似的…

金蝶云星空与MES系统深度集成对接案例全公开

项目背景 深圳市某自动化设备有限公司&#xff0c;自2006年成立以来&#xff0c;一直专注于高端精密自动化设备的研发、生产与销售。作为一家高科技企业&#xff0c;公司依托深圳这一经济特区的地理优势&#xff0c;构建了覆盖全国的服务网络&#xff0c;并拥有两个先进的生产…

椭圆的矩阵表示法

椭圆的矩阵表示法 flyfish 1. 标准几何表示法 标准几何表示法是通过椭圆的几何定义来表示的&#xff1a; x 2 a 2 y 2 b 2 1 \frac{x^2}{a^2} \frac{y^2}{b^2} 1 a2x2​b2y2​1其中&#xff0c; a a a 是椭圆的长半轴长度&#xff0c; b b b 是椭圆的短半轴长度。 2.…

LogicFlow 学习笔记——9. LogicFlow 进阶 节点

LogicFlow 进阶 节点&#xff08;Node&#xff09; 连线规则 在某些时候&#xff0c;我们可能需要控制边的连接方式&#xff0c;比如开始节点不能被其他节点连接、结束节点不能连接其他节点、用户节点后面必须是判断节点等&#xff0c;想要达到这种效果&#xff0c;我们需要为…

iOS开发工具-网络封包分析工具Charles

一、Charles简介 Charles 是在 Mac 下常用的网络封包截取工具&#xff0c;在做 移动开发时&#xff0c;我们为了调试与服务器端的网络通讯协议&#xff0c;常常需要截取网络封包来分析。 Charles 通过将自己设置成系统的网络访问代理服务器&#xff0c;使得所有的网络访问请求…

云手机群控功能讲解

接触云手机之前&#xff0c;很多企业或者个人卖家都对群控有浓厚的兴趣&#xff0c;云手机群控具体是什么呢&#xff1f;云手机群控&#xff0c;顾名思义&#xff0c;是指能够同时对多台云手机进行集中控制和管理的功能。打破了传统单台手机操作的限制&#xff0c;实现了规模化…

ffmpeg音视频开发从入门到精通——ffmpeg下载编译与安装

音视频领域学习ffmpeg的重要性 音视频领域中ffmpeg的广泛应用&#xff0c;包括直播、短视频、网络视频、实时互动和视频监控等领域。掌握FM和音视频技术可以获得更好的薪酬。 学习建议音视频学习建议与实战应用 音视频处理机制的学习&#xff0c;需要勤加练习&#xff0c;带…

nginx出现504 Gateway Time-out错误的原因分析及解决

nginx出现504 Gateway Time-out错误的原因分析及解决 1、查看公网带宽是否被打满 2、查看网络是否有波动(可以在nginx上ping后端服务&#xff0c;看是否有丢包情况) 3、查看服务器资源使用情况(cpu、内存、磁盘、网络等) 4、查看nginx日志&#xff0c;具体到哪个服务的哪个…

浙江保融科技2025实习生校招校招笔试分享

笔试算法题一共是有4道&#xff0c;第一道是手搓模拟实现一个ArrayList&#xff0c;第二道是判断字符串是否回文&#xff0c;第三道是用代码实现1到2种设计模式。 目录 一.模拟实现ArrayList 二.判断字符串是否回文 ▐ 解法一 ▐ 解法二 ▐ 解法三 三.代码实现设计模式 一…

189.二叉树:把二叉搜索树转换为累加树(力扣)

代码解决 /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* Tre…

深度神经网络——决策树的实现与剪枝

概述 决策树 是一种有用的机器学习算法&#xff0c;用于回归和分类任务。 “决策树”这个名字来源于这样一个事实&#xff1a;算法不断地将数据集划分为越来越小的部分&#xff0c;直到数据被划分为单个实例&#xff0c;然后对实例进行分类。如果您要可视化算法的结果&#xf…

【linux】操作系统使用wget下载网络文件,内核tcpv4部分运行日志

打印日志代码及运行日志(多余日志被删除了些)&#xff1a; 登录 - Gitee.comhttps://gitee.com/r77683962/linux-6.9.0/commit/55a53caa06c1472398fac30113c9731cb9e3b482 测试步骤和手段&#xff1a; 1、清空 kern.log&#xff1b; 2、使用wget 下载linux-6.9.tar.gz&…

webgis 之 地图投影

地图投影 什么是地图投影目的种类等角投影的分类墨卡托投影Web 墨卡托投影 参考小结 为了更好地展示地球上的数据&#xff0c;需要将地球投影到一个平面上。地图投影是一个数学问题&#xff0c;按照一定的几何关系&#xff0c;将地球上的经纬度坐标映射到一个平面上的坐标。地球…

c++里 父类私有的虚函数,也是可以被子类重写和继承的。但父类私有的普通函数,子类无法直接使用

谢谢 。今天看课本上有这么个用法&#xff0c;特测试一下。这样就也可以放心的把父类的私有函数列为虚函数了&#xff0c;或者说把父类的虚函数作为私有函数了。 再补充一例&#xff1a;

用Nuitka打包 Python,效果竟如此惊人!

目录 为什么选择Nuitka&#xff1f; Nuitka的工作原理 Nuitka的工作流程大致如下&#xff1a; 安装Nuitka 实战案例 示例代码 打包程序 运行可执行文件 进阶技巧 优化选项 多文件项目 打包第三方库 使用Python开发一个程序后&#xff0c;将Python脚本打包成独立可执…

小红书xs-xt解密

在进行小红书爬虫的时候,有一个关键就是解决动态密文的由来 这边用atob对X-S密文进行解密 可以看到他是一个字符串 可以发现他本来是一个json对象,因为加密需要字符串,所以将json对象转化 为了字符串 而在js中,常用JSON.stringify进行json对象到字符串的转化。 这边将JS…

无版权图片素材搜索网站,解决无版权图片查找问题

在数字内容创作领域&#xff0c;图片素材的选择至关重要。一张高质量、合适的图片不仅能够吸引读者的眼球&#xff0c;还能有效传达信息。然而&#xff0c;找到既免费又无版权限制的图片素材并非易事。小编将为大家介绍几个解决这一问题的无版权图片素材搜索网站&#xff0c;这…

第19章 大数据架构设计理论与实践

19.1 传统数据处理系统存在的问题 海量数据的&#xff0c;数据库过载&#xff0c;增加消息队列、甚至数据分区、读写分离、以及备份以及传统架构的性能的压榨式提升&#xff0c;都没有太明显的效果&#xff0c;帮助处理海量数据的新技术和新架构开发被提上日程。 19.2 大数据处…