数据可视化实验一:Panda数据处理及matplotlib绘图初步

目录​​​​​​​

2024-6-17

一、请将所有含有发明家“吴峰”的发明专利的“申请日”打印出来。并将含有“吴峰”的所有发明专利条目保存到Excel中

1.1 代码实现

1.2 运行结果

二、读取文件创建城市、人口、性别比、城镇化率DataFrame对象,计算指标排名,尝试使用plot绘图

2.1 代码实现

2.2 绘制结果


一、请将所有含有发明家“吴峰”的发明专利的“申请日”打印出来。并将含有“吴峰”的所有发明专利条目保存到Excel中

1.1 代码实现

# 实验要求:请将  所有含有发明家“吴峰”的发明专利的“申请日”打印出来。并将含有“吴峰”的所有发明专利条目保存到Excel中

# 导入pandas库
import pandas as pd

# 从 Excel 读取数据
df = pd.read_excel("实验课数据1.xlsx")

# 筛选出含有发明家“吴峰”的发明专利的“申请日”
filed_df = df[df["发明人"].str.contains("吴峰")]

# 打印含有发明家“吴峰”的发明专利的“申请日”
print(filed_df[["申请日"]])

# 保存含有“吴峰”的所有发明专利条目到 Excel 中
filed_df.to_excel("含有‘吴峰’的发明专利.xlsx", index=False)

1.2 运行结果

(1)原数据“实验课数据1.xlsx”

(2)筛选后的结果

(申请号不一样的原因是系统自动转换的结果)

(3)打印申请日

二、读取文件创建城市、人口、性别比、城镇化率DataFrame对象,计算指标排名,尝试使用plot绘图

2.1 代码实现

# 实验要求:读取文件创建城市、人口、性别比、城镇化率DataFrame对象,计算指标排名,尝试使用plot绘图
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.font_manager as fm

# 设置字体
plt.rcParams['font.family'] = ['Arial Unicode MS']

# data=pd.read_excel('江西省2021年人口普查.xlsx ', engine='openpyxl')
# 创建包含城市、人口、性别比、城镇化率的 DataFrame,江西省不属于城市,不放入考虑范围
data = {
    '城市': ['南昌市', '景德镇市', '萍乡市', '九江市', '新余市', '鹰潭市', '赣州市', '吉安市', '宜春市', '抚州市', '上饶市'],
    '年末常住人口(万人)': [643.75, 162.06, 180.59, 456.07, 120.21, 115.5, 898, 442.51, 497.11, 357.94, 643.67],
    '总人口性别比(女性=100)': [109.98, 107.77, 103.8, 105.56, 109.45, 107.73, 106.02, 106.73, 107.04, 107.22, 106.71],
    '常住人口城镇化率(%)': [78.64, 65.94, 68.77, 62.15, 74.14, 65.43, 56.35, 53.41, 57.38, 57.96, 55.31]
}

df = pd.DataFrame(data)
print(df)
# 计算指标排名
df['人口排名'] = df['年末常住人口(万人)'].rank(ascending=False)
df['性别比排名'] = df['总人口性别比(女性=100)'].rank(ascending=True)
df['城镇化率排名'] = df['常住人口城镇化率(%)'].rank(ascending=False)

# 可视化数据
plt.figure(figsize=(12, 6))
plt.show()

# 每个部分设置不同的颜色
plt.subplot(1, 3, 1)
df[['城市', '人口排名']].set_index('城市').plot(kind='bar', color='skyblue')
plt.title('人口排名')
plt.show()

plt.subplot(1, 3, 2)
df[['城市', '性别比排名']].set_index('城市').plot(kind='bar', color='salmon')
plt.title('性别比排名')
plt.show()

plt.subplot(1, 3, 3)
df[['城市', '城镇化率排名']].set_index('城市').plot(kind='bar', color='lightgreen')
plt.title('城镇化率排名')

plt.tight_layout()
plt.show()

2.2 绘制结果

(1)创建的DataFrame对象

(2)然后进行指标排名,绘图结果如下

I  按照人口排名

绘制结果如下,由于是根据人口排名而不是人口数量进行柱状图绘制,因此可以很直观的看出赣州市的人口数量最多;相反,鹰潭市的人口数量最少。

II 按照性别比排名

由上述图形可以看出,萍乡市的性别比排名第一,而南昌市则是最后一名。

III 按照城镇化率排名

由上图可以看出南昌市的城镇化率是全省最高的,而吉安的城镇化率则居全省末尾。

--------------------

期末加油!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/717712.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

嘴尚绝卤味:传统与创新的味蕾碰撞,尝鲜必备美食!

在当今的餐饮市场中,各式各样的美食层出不穷,让人目不暇接。而在这一片美食的海洋中,嘴尚绝卤味以其独特的魅力和口感,成功吸引了众多食客的目光。今天,就让我们一起来探索一下,嘴尚绝卤味究竟有何魔力&…

MongoDB~分片数据存储Chunk;其迁移原理、影响,以及避免手段

分片数据存储:Chunk存储 Chunk(块) 是 MongoDB 分片集群的一个核心概念,其本质上就是由一组 Document 组成的逻辑数据单元。每个 Chunk 包含一定范围片键的数据,互不相交且并集为全部数据。 分片集群不会记录每条数据…

Java多线程下载工具,多线程,多任务,断点续传,GUI

目录 一、题目要求 二、效果展示 三、功能实现 四、代码 一、题目要求 序号 功能名称 功能需求标识 简要描述 1 下载功能 Download 当用户输入一个下载链接后,能识别链接并开始多线程下载工作,包括线程监听、线程管理等。 2 续传功能 …

[面试题]Spring

[面试题]Java【基础】[面试题]Java【虚拟机】[面试题]Java【并发】[面试题]Java【集合】[面试题]MySQL[面试题]Maven[面试题]Spring Boot[面试题]Spring Cloud[面试题]Spring MVC[面试题]Spring[面试题]MyBatis Spring 是一个很庞大的技术体系,可以说包容一切&…

APP Android

APP Android 安卓源生应用程序 APP IOS-CSDN博客 05.04 06:11Testing

MySQL修改用户权限(宝塔)

在我们安装好的MySQL中,很可能对应某些操作时,不具备操作的权限,如下是解决这些问题的方法 我以宝塔创建数据库为例,创建完成后,以创建的用户名和密码登录 这里宝塔中容易发生问题的地方,登录不上去&#…

电离层对流层延迟解算

前言: 本章节代码均在Gitee中开源: 电离层对流层延迟解算https://gitee.com/Ehundred/navigation-engineering/tree/master/%E5%8D%AB%E6%98%9F%E5%AF%BC%E8%88%AA%E5%8E%9F%E7%90%86/%E7%94%B5%E7%A6%BB%E5%B1%82%E5%AF%B9%E6%B5%81%E5%B1%82%E8%AF%A…

Python学习笔记12:进阶篇(一),类的相关知识

前言 在讲类之前,我们简单介绍一些Python的知识。这些知识在入门篇没讲,想学Python的,基本都对Python有基础的了解,但是今天开始的进阶知识,会涉及到一些Python的特性,所以在这里介绍一下。 Python是一种高…

数据仓库与数据挖掘(期末复习)

数据仓库与数据挖掘(期末复习) ETL的含义Extract 、 Transformation、Load。 ODS的全称Operational Data Store。 DW全称 Data Warehourse DM全称是Data Mart 数据仓库数据抽取时所用到技术是增量、全量、定时、调度 STAGE层作用是提供业务系统数据…

HTC手机卷土重来,价格和配置给我看麻了

第一眼看到我是不敢相信的,HTC 竟然还活着。 提到 HTC,相信不少同学会发出「那是我在夕阳下奔跑并逝去的青春」这样的感叹吧。 曾经辉煌一时的手机大佬,市占率曾一度达到 15%。 璀璨就如同天边一闪而过的流星。关于它的风光地位,…

FinalShell 连接虚拟机超时,主机ping不通虚拟机,解决

出现问题: 连接主机...java.net.ConnectException: Connection timed out: connect 在排查错误时发现: 虚拟机内能互相ping通,虚拟机能ping通主机 但是主机的cmd命令ping不通虚拟机 问题原因: 虚拟机内能互相ping通&#xff0…

基于Java+Swing贪吃蛇小游戏(含课程报告)

博主介绍: 大家好,本人精通Java、Python、C#、C、C编程语言,同时也熟练掌握微信小程序、Php和Android等技术,能够为大家提供全方位的技术支持和交流。 我有丰富的成品Java、Python、C#毕设项目经验,能够为学生提供各类…

计算机组成原理历年考研真题对应知识点(数制与编码)

目录 2.1数制与编码 2.1.1进位计数制及其相互转换 【命题追踪——采用二进制编码的原因(2018)】 【命题追踪——十进制小数转换为二进制小数(2021、2022)】 2.1.2 定点数的编码表示 【命题追踪——补码的表示范围(2010、2013、2014、2022)】 【命题追踪——补码和真值的相…

Debian/Ubuntu linux安装软件

1、官方软件商店安装 2、deb包安装 报错不是sudoers,首先将用户添加到sudo su -l adduser USERNAME sudo exit然后,退出桌面环境并再次登录。 您可以通过输入以下内容来检查上述过程是否成功: groups下载deb包 altshiftf4或右键打开命令行…

【第16章】Vue实战篇之跨域解决

文章目录 前言一、浏览器跨域二、配置代理1.公共请求2.代理配置 总结 前言 前后端项目分离衍生出浏览器跨域问题,开发之前我们通过配置代理解决这个问题。 一、浏览器跨域 浏览器的跨域问题主要是由于浏览器的同源策略导致的。同源策略是浏览器的一个安全功能&…

XZ后门故事:初始分析

2024年3月29日,Openwall OSS安全邮件列表上的一条消息“炸醒”了整个信息安全、开源和Linux社区:XZ出现了一个CVSS评分10.0的恶意后门。 这个后门库的特殊危险在于OpenSSH服务器进程sshd使用它。在多个基于systemd的发行版上(包括Ubuntu、De…

信用VS抵押:贷款的两面镜子

说到贷款这事儿,大家首先想到的可能是有稳定工作、房子或车子的人。 其实,没这些也能贷款,比如咱们还在学校时,银行就来办信用卡了,这就是信用借款的起点。 毕业后,刚工作没钱又想闯,不少人宁愿…

C# 通过Win32API设置客户端系统时间

在日常工作中,有时可能会需要获取或修改客户端电脑的系统时间,比如软件设置了Licence有效期,预计2024-06-01 00:00:00到期,如果客户手动修改了客户端电脑时间,往前调整了一年,则软件就可以继续使用一年&…

【产品经理】订单处理4-拆单策略

上次讲解了订单的促销策略,本次讲解下订单处理过程中的拆单策略。 订单拆单策略分为自动拆单、手动拆单,拆单时机也分为订单未被审核前拆单、订单审核后因仓库/快递情况的拆单,本次主要讲解订单未被审核前拆单、订单审核后快递超重的拆单&am…