随机森林算法进行预测(+调参+变量重要性)--血友病计数数据

1.读取数据

        所使用的数据是血友病数据,如有需要,可在主页资源处获取,数据信息如下:

ddcdd574478b441d91e491390799e8da.png

import pandas as pd
import numpy as np
hemophilia = pd.read_csv('D:/my_files/data.csv')  #读取数据

2.数据预处理

        在使用机器学习方法时,都需要注意变量的数据类型,比如此处的hiv,其实是哑变量,但是使用1,2表示,计算机就会将其当成数值变量分析,所以对这类变量需要先进行处理,此处直接转换,也可采用one-hot编码进行处理。

print("hemophilia每个特征缺失的数目为:\n",hemophilia.isnull().sum())  #查看缺失值
print(hemophilia.dtypes)   # 查看数据类型
'''
hiv        object
factor     object
year        int64
age         int64
py        float64
deaths      int64
dtype: object
'''

#数值变量化为分类变量
hemophilia['hiv']=hemophilia['hiv'].astype(object) 
hemophilia['factor']=hemophilia['factor'].astype(object)
new_hemophilia=pd.get_dummies(hemophilia,drop_first=True)   
    #drop_first=True--删去一列,如hiv,处理后为两列,都是01表示,但只保留一列就足够表示两种状态
new_data=new_hemophilia
new_data.describe(include='all')  #查看基本统计信息
'''
              year          age  ...     factor_4     factor_5
count  2144.000000  2144.000000  ...  2144.000000  2144.000000
mean     86.847481     7.236007  ...     0.217351     0.199627
std       4.899319     3.810280  ...     0.412539     0.399813
min      78.000000     1.000000  ...     0.000000     0.000000
25%      83.000000     4.000000  ...     0.000000     0.000000
50%      87.000000     7.000000  ...     0.000000     0.000000
75%      91.000000    10.000000  ...     0.000000     0.000000
max      95.000000    14.000000  ...     1.000000     1.000000
'''

from sklearn.model_selection import train_test_split
x = new_data.drop(['deaths'],axis=1)   #删去标签列
X_train, X_test, y_train, y_test = train_test_split(x, new_data.deaths, test_size=0.3, random_state=0)  
    #区分数据集,70%训练集,30%测试集

3.随机森林预测及调参


from sklearn import metrics   #加载包用于计算评价指标
from sklearn.ensemble import RandomForestRegressor   #随机森林回归
rf = RandomForestRegressor(random_state=0)  #random_state=0是随机种子数
rf.fit(X_train, y_train)  #不调参,直接训练模型
y_pred = rf.predict(X_test)
print('MSE of RF: %.3f' %metrics.mean_squared_error(y_test, y_pred))  # %.3f保留三位小数
'''
MSE of RF: 0.306
'''

        在随机森林进行调参时,就是对一些重要参数给定各自的取值范围,再遍历所有参数取值的组合,得到最优参数。这里调整学习率'n_estimators',树深'max_depth',节点最小样本数'min_samples_split',也可以选取其他的参数调整。一次调参每个参数取值不宜太多,否则会很慢,可以找到比较好的区间后减小取值间隔,重复操作;也可以一次调节两个(或一个)参数,找到最优值再对其他参数逐二(或逐一)进行调整,最后使用调整后的参数进行建模。

from sklearn.model_selection import GridSearchCV
param_grid = {'n_estimators':np.arange(10,200,30),      
              'max_depth' : np.arange(2,7,1),
              'min_samples_split' :  np.arange(2,10,2)}
GS = GridSearchCV(rf,param_grid,scoring = 'neg_mean_squared_error',cv=5)
    #取值为scoring“neg_mean_squared_error”,代表使用MSE作为衡量回归树质量的指标,进行五折交叉验证
GS.fit(X_train, y_train)
GS.best_params_  #最佳参数组合
'''
{'max_depth': 4, 'min_samples_split': 8, 'n_estimators': 40}

'''
rf = RandomForestRegressor(max_depth = 4, n_estimators = 40,min_samples_split = 8, random_state=0)
    #使用调参后的参数建立模型
rf.fit(X_train, y_train)  
y_pred = rf.predict(X_test)
print('MSE of RF: %.3f' %metrics.mean_squared_error(y_test, y_pred))
#调参效果不明显,考虑改变调参取值或参数选取,也可能是数据不适合随机森林,不同数据有不同表现
'''
MSE of RF: 0.305
'''

4.随机森林输出变量重要性

        随机森林能够在建模的同时得到变量重要性,可以通过以下方式将变量重要性表示出来。

import matplotlib.pyplot as plt
importances = list(rf.feature_importances_)  #随机森林特征重要性
feature_list = list(x.columns)   #获取变量名
feature_importances = [(feature, round(importance, 2)) for feature, importance in zip(feature_list, importances)]
#feature_importances.pop(0)
feature_importances = sorted(feature_importances, key=lambda x: x[1], reverse=True)
f_list = []
importances_list = []
for i in range(0,8):
    feature = feature_importances[i][0]
    importances_r = feature_importances[i][1]
    f_list.append(feature),importances_list.append(importances_r)
x_values = list(range(len(importances_list)))
plt.figure(figsize=(14, 9))
plt.bar(x_values, importances_list, orientation='vertical')
plt.xticks(x_values, f_list, rotation=25, size =18)
plt.yticks(size =18)
plt.ylabel('Importance',size = 20)
plt.xlabel('Variable',size = 20)
plt.title('RF Variable Importances',size = 22)
#plt.savefig('D:/files/rf变量重要性.png', dpi=1500)    
    #保存图片到指定位置 dpi--分辨率
plt.show()

​​​​​

        得到变量重要性条形图如下:

1dd1a43a80754e8ca847880903d21e3b.png

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/710400.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Excel 常用技巧(二)

Microsoft Excel 是微软为 Windows、macOS、Android 和 iOS 开发的电子表格软件,可以用来制作电子表格、完成许多复杂的数据运算,进行数据的分析和预测,并且具有强大的制作图表的功能。由于 Excel 具有十分友好的人机界面和强大的计算功能&am…

文章解读与仿真程序复现思路——电工技术学报EI\CSCD\北大核心《考虑源网储协同配合下的移动式波浪能发电平台并网优化调度》

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》 论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html 电网论文源程序-CSDN博客电网论文源…

理解Es的DSL语法(二):聚合

前一篇已经系统介绍过查询语法,详细可直接看上一篇文章(理解DSL语法(一)),本篇主要介绍DSL中的另一部分:聚合 理解Es中的聚合 虽然Elasticsearch 是一个基于 Lucene 的搜索引擎,但…

判断QT程序是否重复运行

打开exe&#xff0c;再次打开进行提示。 main.cpp添加&#xff1a; #include "QtFilePreview.h" #include <QtWidgets/QApplication> #include <windows.h> #include <qmessagebox.h> #pragma execution_character_set("utf-8")bool Ch…

【LeetCode:2779. 数组的最大美丽值 + 排序 + 二分】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…

荣耀笔记本IP地址查看方法详解:轻松掌握网络配置技巧

在数字化时代的浪潮中&#xff0c;笔记本电脑已经成为我们生活和工作中不可或缺的重要工具。对于荣耀笔记本用户而言&#xff0c;掌握基本的网络配置技巧显得尤为重要。其中&#xff0c;查看IP地址是连接网络、配置设备、排除故障等场景下的关键步骤。本文将详细介绍荣耀笔记本…

adb shell pm path packageName

在Android命令行中&#xff0c;如果你想要查询某个应用程序的安装位置&#xff0c;可以使用pm命令&#xff08;Package Manager的缩写&#xff09;。这个命令提供了很多关于软件包管理的操作&#xff0c;查询应用安装路径&#xff0c;可以使用path选项。 具体命令如下&#xf…

2024全国大学生信息安全竞赛(ciscn)半决赛(华南赛区)Pwn题解

前言 找华南赛区的师傅要了一份半决赛的Pwn题&#xff0c;听说只有一道题。 题目很简单&#xff0c;可以申请任意大小chunk&#xff0c;并存在UAF、DoubleFree漏洞。 还给了后门函数&#xff0c;不过限制是edit只能写8字节的数据到chunk中。 MyHeap 逆向分析 拖入IDA分析…

ETL可视化工具 DataX -- 简介( 一)

引言 DataX 系列文章&#xff1a; ETL可视化工具 DataX – 安装部署 ( 二) 1.1 DataX 1.1.1 Data X概览 DataX 是阿里云DataWorks数据集成的开源版本&#xff0c;在阿里巴巴集团内被广泛使用的离线数据同步工具/平台。DataX 实现了包括 MySQL、Oracle、OceanBase、SqlServ…

【GD32F303红枫派使用手册】第十六节 USART-DMA串口收发实验

16.1 实验内容 通过本实验主要学习以下内容&#xff1a; 串口DMA工作原理 使用DMA进行串口收发 16.2 实验原理 16.2.1 串口DMA工作原理 在前面ADC章节中&#xff0c;我们介绍了DMA的工作原理&#xff0c;这里就不多做介绍。从GD32F303用户手册中可以查到&#xff0c;各串…

四轴飞行器、无人机(STM32、NRF24L01)

一、简介 此电路由STM32为主控芯片&#xff0c;NRF24L01、MPU6050为辅,当接受到信号时&#xff0c;处理对应的指令。 二、实物图 三、部分代码 void FlightPidControl(float dt) { volatile static uint8_t statusWAITING_1; switch(status) { case WAITING_1: //等待解锁 if…

LED显示屏色差处理方法

LED显示屏以其高亮度、低功耗和长寿命等优点&#xff0c;在广告、信息发布和舞台背景等领域得到广泛应用。然而&#xff0c;由于生产批次的不同&#xff0c;LED显示屏在亮度和色度上可能存在差异&#xff0c;影响显示效果。本文将探讨如何通过逐点校正技术来解决这一问题。 逐点…

【C++】和【预训练模型】实现【机器学习】【图像分类】的终极指南

目录 &#x1f497;1. 准备工作和环境配置&#x1f495; &#x1f496;安装OpenCV&#x1f495; &#x1f496;安装Dlib&#x1f495; 下载并编译TensorFlow C API&#x1f495; &#x1f497;2. 下载和配置预训练模型&#x1f495; &#x1f496;2.1 下载预训练的ResNet…

python-基础篇-函数-是什么

文章目录 定义一&#xff1a;如果在开发程序时&#xff0c;需要某块代码多次执行。为了提高编写的效率以及更好的维护代码&#xff0c;需要把具有独立功能的代码块组织为一个小模块&#xff0c;这就是函数。定义一&#xff1a;我们把一些数据喂给函数&#xff0c;让他内部消化&…

七、IP路由原理和路由引入

目录 一、IP路由原理 二、路由引入 2.1、双点双向路由引入 2.2、路由回灌 三、路由策略与路由控制 路由匹配工具&#xff08;规则&#xff09; ACL IP前缀列表 路由控制工具&#xff08;控制&#xff09; 策略工具1 策略工具2 搭配组合 组…

JAVA-CopyOnWrite并发集合

文章目录 JAVA并发集合1_实现原理2_什么是CopyOnWrite?3_CopyOnWriteArrayList的原理4_CopyOnWriteArraySet5_使用场景6_总结 JAVA并发集合 从Java5开始&#xff0c;Java在java.util.concurrent包下提供了大量支持高效并发访问的集合类&#xff0c;它们既能包装良好的访问性能…

【字符函数】

接下来介绍部分字符函数测试 2. 字符转换函数 1.字符分类函数 1.1iscntrl 注&#xff1a;任何控制字符 检查是否有控制字符 符合为真 int main() {int i 0;char str[] "first line \n second line \n";//判断是否遇到控制字符while (!iscntrl(str[i])){p…

springboot网上书店管理系统-计算机毕业设计源码03780

摘 要 网上书店管理系统采用B/S结构、java开发语言、以及Mysql数据库等技术。系统主要分为管理员和用户两部分&#xff0c;管理员管理主要功能包括&#xff1a;首页、站点管理&#xff08;轮播图&#xff09;用户管理&#xff08;管理员、注册用户&#xff09;内容管理&#x…

51单片机STC89C52RC——代码编译

1&#xff0c;勾选 “Create HEX file” 2&#xff0c;编译

【智源大会2024】(一)智源技术专题

智源的全家桶&#xff1a; 微调数据相关&#xff1a; 1.千万级数据集: BAAI创建了首个千万级别的高质量开源指令微调数据集。 2.模型性能与数据质量: 强调了模型性能与数据质量之间的高度相关性。 3.技术亮点: 使用了高质量的指令数据筛选与合成技术。这些技术显著提升了模型…