【C++】和【预训练模型】实现【机器学习】【图像分类】的终极指南

目录

💗1. 准备工作和环境配置💕

💖安装OpenCV💕

💖安装Dlib💕

下载并编译TensorFlow C++ API💕

💗2. 下载和配置预训练模型💕

💖2.1 下载预训练的ResNet-50模型💕

💖2.2 配置TensorFlow C++ API💕

💖2.3 加载和使用模型💕

💗3.编写代码进行图像分类💕

💖CMakeLists.txt💕

💖main.cpp💕

💗4. 代码分析和推导💕

💖初始化TensorFlow会话💕

💖读取和导入模型💕

💖读取输入图像💕

💖创建输入Tensor💕

💖运行会话并处理输出💕

💗5. 进阶优化与性能提升💕

💖多线程处理💕

💖GPU加速💕

💖模型优化💕

💗6. 问题与解决方案💕

💖问题1:内存不足💕

💖问题2:推理速度慢💕

💖问题3:模型兼容性问题💕

 


 

在现代机器学习和人工智能应用中,图像分类是一个非常常见且重要的任务。通过使用预训练模型,我们可以显著减少训练时间并提高准确性。C++作为一种高效的编程语言,特别适用于需要高性能计算的任务。226b4e959a0c4b4ca7e72460c6008eb7.png

💗1. 准备工作和环境配置💕

首先,我们需要配置开发环境。这里我们将使用以下工具和库:

  • C++ 编译器 (如GCC)
  • CMake 构建系统
  • OpenCV 库
  • Dlib 库
  • 下载并编译C++版本的TensorFlow

💖安装OpenCV💕

在Linux系统上,可以通过以下命令安装OpenCV:

sudo apt-get update
sudo apt-get install libopencv-dev

💖安装Dlib💕

Dlib是一个现代C++工具包,包含了机器学习算法和工具。可以通过以下命令安装:

git clone https://github.com/davisking/dlib.git
cd dlib
mkdir build
cd build
cmake ..
cmake --build .
sudo make install

下载并编译TensorFlow C++ API💕

下载TensorFlow的C++库并编译,可以参考TensorFlow官方文档进行详细的步骤。确保下载的版本与您当前的环境兼容。

💗2. 下载和配置预训练模型💕

使用ResNet-50模型,这是一个用于图像分类的深度卷积神经网络。在TensorFlow中,可以轻松地获取预训练的ResNet-50模型。以下是下载和配置ResNet-50模型的详细步骤:

💖2.1 下载预训练的ResNet-50模型💕

首先,我们需要下载预训练的ResNet-50模型。TensorFlow提供了很多预训练模型,您可以从TensorFlow的模型库中获取ResNet-50。

1.访问TensorFlow模型库: 打开浏览器,访问TensorFlow模型库的GitHub页面:TensorFlow Model Garden

2.选择预训练模型: 在模型库中找到ResNet-50模型。通常在tensorflow/models/official/vision/image_classification目录下可以找到相关的预训练模型。

3.下载模型文件: 下载模型文件,模型文件通常是一个.pb文件(TensorFlow模型的protobuf格式)。如果直接下载预训练模型文件不方便,可以使用TensorFlow的tf.keras.applications模块直接加载ResNet-50,并保存为.pb文件。

使用Python脚本下载并保存ResNet-50模型:

import tensorflow as tf

model = tf.keras.applications.ResNet50(weights='imagenet')
model.save('resnet50_saved_model', save_format='tf')
  • 运行此脚本将会在当前目录生成一个名为resnet50_saved_model的文件夹,其中包含了模型的.pb文件。

💖2.2 配置TensorFlow C++ API💕

在下载模型文件后,我们需要配置TensorFlow的C++ API来加载和使用该模型。以下是配置步骤:

1.安装TensorFlow C++库: 从TensorFlow的官方网站下载适用于您的平台的TensorFlow C++库。如果没有现成的二进制包,可以从源代码编译TensorFlow C++库。

git clone https://github.com/tensorflow/tensorflow.git
cd tensorflow
./configure
bazel build //tensorflow:libtensorflow_cc.so

编译完成后,库文件位于bazel-bin/tensorflow目录下。

2.设置环境变量: 将TensorFlow C++库的包含路径和库文件路径添加到环境变量中。

export TF_CPP_INCLUDE_DIR=/path/to/tensorflow/include
export TF_CPP_LIB_DIR=/path/to/tensorflow/lib

3.配置CMakeLists.txt: 更新项目的CMakeLists.txt文件,包含TensorFlow C++库的路径。

cmake_minimum_required(VERSION 3.10)
project(ImageClassification)

set(CMAKE_CXX_STANDARD 14)

find_package(OpenCV REQUIRED)
find_package(Dlib REQUIRED)

include_directories(${OpenCV_INCLUDE_DIRS})
include_directories(${Dlib_INCLUDE_DIRS})
include_directories(${TF_CPP_INCLUDE_DIR})
link_directories(${TF_CPP_LIB_DIR})

add_executable(ImageClassification main.cpp)
target_link_libraries(ImageClassification ${OpenCV_LIBS} dlib::dlib tensorflow_cc)

💖2.3 加载和使用模型💕

在完成上述配置后,可以在C++代码中加载和使用ResNet-50模型。下面是示例代码,演示如何加载和使用该模型进行图像分类:

#include <iostream>
#include <opencv2/opencv.hpp>
#include <dlib/dnn.h>
#include <tensorflow/core/public/session.h>
#include <tensorflow/core/protobuf/meta_graph.pb.h>

using namespace std;
using namespace cv;
using namespace tensorflow;

// 定义图像分类函数
void classifyImage(const std::string& model_path, const std::string& image_path) {
    // 初始化TensorFlow会话
    Session* session;
    Status status = NewSession(SessionOptions(), &session);
    if (!status.ok()) {
        std::cerr << "Error creating TensorFlow session: " << status.ToString() << std::endl;
        return;
    }

    // 读取模型
    GraphDef graph_def;
    status = ReadBinaryProto(Env::Default(), model_path, &graph_def);
    if (!status.ok()) {
        std::cerr << "Error reading graph definition from " << model_path << ": " << status.ToString() << std::endl;
        return;
    }

    // 将模型导入会话
    status = session->Create(graph_def);
    if (!status.ok()) {
        std::cerr << "Error creating graph: " << status.ToString() << std::endl;
        return;
    }

    // 读取输入图像
    Mat img = imread(image_path);
    if (img.empty()) {
        std::cerr << "Error reading image: " << image_path << std::endl;
        return;
    }

    // 预处理图像
    Mat img_resized;
    resize(img, img_resized, Size(224, 224));
    img_resized.convertTo(img_resized, CV_32FC3);
    img_resized = img_resized / 255.0;

    // 创建输入Tensor
    Tensor input_tensor(DT_FLOAT, TensorShape({1, 224, 224, 3}));
    auto input_tensor_mapped = input_tensor.tensor<float, 4>();

    // 将图像数据复制到输入Tensor
    for (int y = 0; y < 224; ++y) {
        for (int x = 0; x < 224; ++x) {
            for (int c = 0; c < 3; ++c) {
                input_tensor_mapped(0, y, x, c) = img_resized.at<Vec3f>(y, x)[c];
            }
        }
    }

    // 运行会话
    std::vector<Tensor> outputs;
    status = session->Run({{"input_tensor", input_tensor}}, {"output_tensor"}, {}, &outputs);
    if (!status.ok()) {
        std::cerr << "Error during inference: " << status.ToString() << std::endl;
        return;
    }

    // 处理输出
    auto output_tensor = outputs[0].tensor<float, 2>();
    int best_label = std::distance(output_tensor(0).data(), std::max_element(output_tensor(0).data(), output_tensor(0).data() + output_tensor.dim_size(1)));

    std::cout << "Predicted label: " << best_label << std::endl;

    // 清理
    session->Close();
    delete session;
}

int main(int argc, char** argv) {
    if (argc != 3) {
        std::cerr << "Usage: " << argv[0] << " <model_path> <image_path>" << std::endl;
        return 1;
    }

    const std::string model_path = argv[1];
    const std::string image_path = argv[2];

    classifyImage(model_path, image_path);

    return 0;
}

💗3.编写代码进行图像分类💕

使用预训练的ResNet-50模型进行图像分类。

💖CMakeLists.txt💕

cmake_minimum_required(VERSION 3.10)
project(ImageClassification)

set(CMAKE_CXX_STANDARD 14)

find_package(OpenCV REQUIRED)
find_package(Dlib REQUIRED)

include_directories(${OpenCV_INCLUDE_DIRS})
include_directories(${Dlib_INCLUDE_DIRS})
include_directories(/path/to/tensorflow/include)
link_directories(/path/to/tensorflow/lib)

add_executable(ImageClassification main.cpp)
target_link_libraries(ImageClassification ${OpenCV_LIBS} dlib::dlib tensorflow)

💖main.cpp💕

#include <iostream>
#include <opencv2/opencv.hpp>
#include <dlib/dnn.h>
#include <tensorflow/core/public/session.h>
#include <tensorflow/core/protobuf/meta_graph.pb.h>

using namespace std;
using namespace cv;
using namespace tensorflow;

// 定义图像分类函数
void classifyImage(const std::string& model_path, const std::string& image_path) {
    // 初始化TensorFlow会话
    Session* session;
    Status status = NewSession(SessionOptions(), &session);
    if (!status.ok()) {
        std::cerr << "Error creating TensorFlow session: " << status.ToString() << std::endl;
        return;
    }

    // 读取模型
    GraphDef graph_def;
    status = ReadBinaryProto(Env::Default(), model_path, &graph_def);
    if (!status.ok()) {
        std::cerr << "Error reading graph definition from " << model_path << ": " << status.ToString() << std::endl;
        return;
    }

    // 将模型导入会话
    status = session->Create(graph_def);
    if (!status.ok()) {
        std::cerr << "Error creating graph: " << status.ToString() << std::endl;
        return;
    }

    // 读取输入图像
    Mat img = imread(image_path);
    if (img.empty()) {
        std::cerr << "Error reading image: " << image_path << std::endl;
        return;
    }

    // 预处理图像
    Mat img_resized;
    resize(img, img_resized, Size(224, 224));
    img_resized.convertTo(img_resized, CV_32FC3);
    img_resized = img_resized / 255.0;

    // 创建输入Tensor
    Tensor input_tensor(DT_FLOAT, TensorShape({1, 224, 224, 3}));
    auto input_tensor_mapped = input_tensor.tensor<float, 4>();

    // 将图像数据复制到输入Tensor
    for (int y = 0; y < 224; ++y) {
        for (int x = 0; x < 224; ++x) {
            for (int c = 0; c < 3; ++c) {
                input_tensor_mapped(0, y, x, c) = img_resized.at<Vec3f>(y, x)[c];
            }
        }
    }

    // 运行会话
    std::vector<Tensor> outputs;
    status = session->Run({{"input_tensor", input_tensor}}, {"output_tensor"}, {}, &outputs);
    if (!status.ok()) {
        std::cerr << "Error during inference: " << status.ToString() << std::endl;
        return;
    }

    // 处理输出
    auto output_tensor = outputs[0].tensor<float, 2>();
    int best_label = std::distance(output_tensor(0).data(), std::max_element(output_tensor(0).data(), output_tensor(0).data() + output_tensor.dim_size(1)));

    std::cout << "Predicted label: " << best_label << std::endl;

    // 清理
    session->Close();
    delete session;
}

int main(int argc, char** argv) {
    if (argc != 3) {
        std::cerr << "Usage: " << argv[0] << " <model_path> <image_path>" << std::endl;
        return 1;
    }

    const std::string model_path = argv[1];
    const std::string image_path = argv[2];

    classifyImage(model_path, image_path);

    return 0;
}

💗4. 代码分析和推导💕

💖初始化TensorFlow会话💕

首先,我们初始化一个TensorFlow会话。这个会话将用于执行图中的操作。

Session* session;
Status status = NewSession(SessionOptions(), &session);
if (!status.ok()) {
    std::cerr << "Error creating TensorFlow session: " << status.ToString() << std::endl;
    return;
}

💖读取和导入模型💕

使用ReadBinaryProto函数读取二进制格式的模型文件,并将其导入会话。

GraphDef graph_def;
status = ReadBinaryProto(Env::Default(), model_path, &graph_def);
if (!status.ok()) {
    std::cerr << "Error reading graph definition from " << model_path << ": " << status.ToString() << std::endl;
    return;
}

status = session->Create(graph_def);
if (!status.ok()) {
    std::cerr << "Error creating graph: " << status.ToString() << std::endl;
    return;
}

💖读取输入图像💕

我们使用OpenCV读取图像,并将其大小调整为224x224,这是ResNet-50模型所需的输入尺寸。

Mat img = imread(image_path);
if (img.empty()) {
    std::cerr << "Error reading image: " << image_path << std::endl;
    return;
}

Mat img_resized;
resize(img, img_resized, Size(224, 224));
img_resized.convertTo(img_resized, CV_32FC3);
img_resized = img_resized / 255.0;

💖创建输入Tensor💕

接下来,创建一个TensorFlow的Tensor,并将图像数据复制到该Tensor中。

Tensor input_tensor(DT_FLOAT, TensorShape({1, 224, 224, 3}));
auto input_tensor_mapped = input_tensor.tensor<float, 4>();

for (int y = 0; y < 224; ++y) {
    for (int x = 0; x < 224; ++x) {
        for (int c = 0; c < 3; ++c) {
            input_tensor_mapped(0, y, x, c) = img_resized.at<Vec3f>(y, x)[c];
        }
    }
}

💖运行会话并处理输出💕

使用会话运行模型,并获取输出结果。

std::vector<Tensor> outputs;
status = session->Run({{"input_tensor", input_tensor}}, {"output_tensor"}, {}, &outputs);
if (!status.ok()) {
    std::cerr << "Error during inference: " << status.ToString() << std::endl;
    return;
}

auto output_tensor = outputs[0].tensor<float, 2>();
int best_label = std::distance(output_tensor(0).data(), std::max_element(output_tensor(0).data(), output_tensor(0).data() + output_tensor.dim_size(1)));

std::cout << "Predicted label: " << best_label << std::endl;

💗5. 进阶优化与性能提升💕

在这部分中,我们将探讨如何进一步优化代码以提高性能和效率。这些技巧和方法包括多线程处理、GPU加速、模型优化等。

💖多线程处理💕

在处理大量图像时,利用多线程可以显著提高处理速度。C++中的std::thread库使得多线程编程更加方便。多线程处理:

#include <thread>
#include <vector>

// 定义一个处理图像的函数
void processImage(const std::string& model_path, const std::string& image_path) {
    classifyImage(model_path, image_path);
}

int main(int argc, char** argv) {
    if (argc < 3) {
        std::cerr << "Usage: " << argv[0] << " <model_path> <image_paths...>" << std::endl;
        return 1;
    }

    const std::string model_path = argv[1];
    std::vector<std::string> image_paths;
    for (int i = 2; i < argc; ++i) {
        image_paths.push_back(argv[i]);
    }

    std::vector<std::thread> threads;
    for (const auto& image_path : image_paths) {
        threads.emplace_back(processImage, model_path, image_path);
    }

    for (auto& t : threads) {
        if (t.joinable()) {
            t.join();
        }
    }

    return 0;
}

通过这种方式,我们可以同时处理多个图像,从而提高整体处理效率。

💖GPU加速💕

GPU在处理大规模并行计算任务时具有显著优势。TensorFlow的C++ API支持GPU加速,只需在创建会话时指定GPU设备即可:

SessionOptions options;
options.config.mutable_gpu_options()->set_allow_growth(true);
Session* session;
Status status = NewSession(options, &session);
if (!status.ok()) {
    std::cerr << "Error creating TensorFlow session: " << status.ToString() << std::endl;
    return;
}

在配置好CUDA和cuDNN后,TensorFlow会自动利用GPU进行计算,从而显著提高计算速度。

💖模型优化💕

模型优化是提升推理速度和减少内存占用的重要手段。常用的方法包括模型量化和裁剪。可以使用TensorFlow的模型优化工具进行这些优化。

使用TensorFlow的模型优化API进行量化:

import tensorflow as tf
from tensorflow_model_optimization.quantization.keras import vitis_quantize

model = tf.keras.models.load_model('model.h5')
quantized_model = vitis_quantize.quantize_model(model)
quantized_model.save('quantized_model.h5')

将量化后的模型加载到C++项目中,可以显著减少模型的计算量,从而提高推理速度。

💗6. 问题与解决方案💕

在实际应用中,可能会遇到各种问题。以下是一些常见问题及其解决方案,具体分析每种问题的可能原因和详细的解决步骤。

💖问题1:内存不足💕

解决方案:

1.减少批处理大小: 批处理大小(batch size)是指一次性送入模型进行处理的数据样本数。如果批处理大小过大,可能会导致内存溢出。可以通过减小批处理大小来减少内存使用。例如,将批处理大小从32减小到16甚至更小。

// 将批处理大小设置为1
Tensor input_tensor(DT_FLOAT, TensorShape({1, 224, 224, 3}));

2.使用模型量化技术: 模型量化通过将浮点数转换为低精度整数来减少模型大小和内存占用。TensorFlow提供了量化工具,可以在训练后对模型进行量化。

import tensorflow as tf
from tensorflow_model_optimization.quantization.keras import vitis_quantize

model = tf.keras.models.load_model('model.h5')
quantized_model = vitis_quantize.quantize_model(model)
quantized_model.save('quantized_model.h5')

3.更高效的数据预处理方法: 使用OpenCV或其他图像处理库进行高效的数据预处理,尽量减少在内存中的图像副本。在读取图像后立即进行缩放和归一化处理。

Mat img = imread(image_path);
resize(img, img_resized, Size(224, 224));
img_resized.convertTo(img_resized, CV_32FC3);
img_resized = img_resized / 255.0;

💖问题2:推理速度慢💕

解决方案:

1.使用GPU加速: GPU在处理大规模并行计算任务时具有显著优势。在TensorFlow中可以通过指定GPU设备来加速推理。

SessionOptions options;
options.config.mutable_gpu_options()->set_allow_growth(true);
Session* session;
Status status = NewSession(options, &session);
if (!status.ok()) {
    std::cerr << "Error creating TensorFlow session: " << status.ToString() << std::endl;
    return;
}

2.利用多线程并行处理: 使用C++的多线程库(如std::thread)来并行处理多个图像,充分利用多核CPU的计算能力。

#include <thread>
#include <vector>

void processImage(const std::string& model_path, const std::string& image_path) {
    classifyImage(model_path, image_path);
}

int main(int argc, char** argv) {
    if (argc < 3) {
        std::cerr << "Usage: " << argv[0] << " <model_path> <image_paths...>" << std::endl;
        return 1;
    }

    const std::string model_path = argv[1];
    std::vector<std::string> image_paths;
    for (int i = 2; i < argc; ++i) {
        image_paths.push_back(argv[i]);
    }

    std::vector<std::thread> threads;
    for (const auto& image_path : image_paths) {
        threads.emplace_back(processImage, model_path, image_path);
    }

    for (auto& t : threads) {
        if (t.joinable()) {
            t.join();
        }
    }

    return 0;
}

3.优化模型结构: 优化模型结构,例如减少模型层数、使用更小的卷积核等,可以提高推理速度。具体方法包括剪枝、合并卷积层等。

4.使用模型量化和裁剪技术: 量化可以显著减少模型大小和计算量,从而提高推理速度。模型裁剪(pruning)通过去除不重要的权重来优化模型。

import tensorflow_model_optimization as tfmot

prune_low_magnitude = tfmot.sparsity.keras.prune_low_magnitude
pruning_params = {
    'pruning_schedule': tfmot.sparsity.keras.PolynomialDecay(initial_sparsity=0.30,
                                                             final_sparsity=0.70,
                                                             begin_step=2000,
                                                             end_step=10000)
}

model_for_pruning = prune_low_magnitude(model, **pruning_params)
model_for_pruning.compile(optimizer='adam',
                          loss=tf.keras.losses.categorical_crossentropy,
                          metrics=['accuracy'])

model_for_pruning.fit(train_data, train_labels, epochs=2, validation_split=0.1)

💖问题3:模型兼容性问题💕

解决方案:

  1. 确保模型文件和库版本匹配: 在不同平台上使用模型时,确保模型文件与库版本匹配非常重要。例如,TensorFlow模型的版本和TensorFlow库的版本必须一致。

  2. 重新训练和导出模型: 如果遇到兼容性问题,尝试在目标平台上重新训练并导出模型。这样可以确保模型和运行环境的完全兼容。

    import tensorflow as tf
    
    # 重新训练模型
    model = tf.keras.models.Sequential([
        tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(224, 224, 3)),
        tf.keras.layers.MaxPooling2D((2, 2)),
        tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
        tf.keras.layers.MaxPooling2D((2, 2)),
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(64, activation='relu'),
        tf.keras.layers.Dense(10, activation='softmax')
    ])
    
    model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
    model.fit(train_images, train_labels, epochs=10)
    
    # 导出模型
    model.save('retrained_model.h5')
    

    3.使用中间格式进行转换: 使用ONNX(开放神经网络交换)格式,可以在不同的深度学习框架之间转换模型。可以使用tf2onnx将TensorFlow模型转换为ONNX格式,然后在目标平台上加载ONNX模型。

    import tf2onnx
    import tensorflow as tf
    
    model = tf.keras.models.load_model('model.h5')
    spec = (tf.TensorSpec((None, 224, 224, 3), tf.float32, name="input"),)
    output_path = "model.onnx"
    
    model_proto, _ = tf2onnx.convert.from_keras(model, input_signature=spec, opset=13)
    with open(output_path, "wb") as f:
        f.write(model_proto.SerializeToString())
    

    然后在C++中使用ONNX Runtime加载和推理ONNX模型:

    #include <onnxruntime/core/providers/cpu/cpu_provider_factory.h>
    #include <onnxruntime/core/providers/tensorrt/tensorrt_provider_factory.h>
    #include <onnxruntime/core/session/onnxruntime_cxx_api.h>
    
    int main() {
        Ort::Env env(ORT_LOGGING_LEVEL_WARNING, "ONNXModel");
    
        Ort::SessionOptions session_options;
        session_options.AppendExecutionProvider_TensorRT();
        session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_EXTENDED);
    
        Ort::Session session(env, "model.onnx", session_options);
    
        // 输入、输出和推理代码略...
        
        return 0;
    }
    

     

    2abe820ccf5e4af399c6049449f1dd1e.png

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/710377.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

python-基础篇-函数-是什么

文章目录 定义一&#xff1a;如果在开发程序时&#xff0c;需要某块代码多次执行。为了提高编写的效率以及更好的维护代码&#xff0c;需要把具有独立功能的代码块组织为一个小模块&#xff0c;这就是函数。定义一&#xff1a;我们把一些数据喂给函数&#xff0c;让他内部消化&…

七、IP路由原理和路由引入

目录 一、IP路由原理 二、路由引入 2.1、双点双向路由引入 2.2、路由回灌 三、路由策略与路由控制 路由匹配工具&#xff08;规则&#xff09; ACL IP前缀列表 路由控制工具&#xff08;控制&#xff09; 策略工具1 策略工具2 搭配组合 组…

JAVA-CopyOnWrite并发集合

文章目录 JAVA并发集合1_实现原理2_什么是CopyOnWrite?3_CopyOnWriteArrayList的原理4_CopyOnWriteArraySet5_使用场景6_总结 JAVA并发集合 从Java5开始&#xff0c;Java在java.util.concurrent包下提供了大量支持高效并发访问的集合类&#xff0c;它们既能包装良好的访问性能…

【字符函数】

接下来介绍部分字符函数测试 2. 字符转换函数 1.字符分类函数 1.1iscntrl 注&#xff1a;任何控制字符 检查是否有控制字符 符合为真 int main() {int i 0;char str[] "first line \n second line \n";//判断是否遇到控制字符while (!iscntrl(str[i])){p…

springboot网上书店管理系统-计算机毕业设计源码03780

摘 要 网上书店管理系统采用B/S结构、java开发语言、以及Mysql数据库等技术。系统主要分为管理员和用户两部分&#xff0c;管理员管理主要功能包括&#xff1a;首页、站点管理&#xff08;轮播图&#xff09;用户管理&#xff08;管理员、注册用户&#xff09;内容管理&#x…

51单片机STC89C52RC——代码编译

1&#xff0c;勾选 “Create HEX file” 2&#xff0c;编译

【智源大会2024】(一)智源技术专题

智源的全家桶&#xff1a; 微调数据相关&#xff1a; 1.千万级数据集: BAAI创建了首个千万级别的高质量开源指令微调数据集。 2.模型性能与数据质量: 强调了模型性能与数据质量之间的高度相关性。 3.技术亮点: 使用了高质量的指令数据筛选与合成技术。这些技术显著提升了模型…

效率翻倍!ComfyUI 必装的工作流+模型管理插件 Workspace Manager

一、Workspace Manager 安装方式 插件 Github 网址&#xff1a; https://github.com/11cafe/comfyui-workspace-manager 如果你没有安装 Workspace Manager 插件&#xff0c;可以通过以下 2 种方式安装&#xff1a; ① 通过 ComfyUI Manager 安装&#xff08;推荐&#xff0…

AI办公自动化:kimi批量搜索提取PDF文档中特定文本内容

工作任务&#xff1a;PDF文档中有资料来源这一行&#xff0c;比如&#xff1a; 资料来源&#xff1a;moomoo tech、The Information、Bloomberg、Reuters&#xff0c;浙商证券研究所 数据来源&#xff1a;CSDN、浙商证券研究所 数据来源&#xff1a;CSDN、arXiv、浙商证券研…

OpenGL3.3_C++_Windows(7)

演示 最终演示效果 ​​​​ 冯氏光照 光照原理&#xff1a;对于向量相乘默认为点乘&#xff0c;如果*lightColor(1.0f, 1.0f, 1.0f);白光&#xff0c;值不变物体的颜色显示原理&#xff1a;不被物体吸收的光反射&#xff0c;也就是由白光分解后的一部分&#xff0c;因此&…

力扣 面试题17.04.消失的数字

数组nums包含从0到n的所有整数&#xff0c;但其中缺了一个。请编写代码找出那个缺失的整数。你有办法在O(n)时间内完成吗&#xff1f; 示例 1&#xff1a; 输入&#xff1a;[3,0,1] 输出&#xff1a;2 示例 2&#xff1a; 输入&#xff1a;[9,6,4,2,3,5,7,0,1] 输出&#x…

JavaScript 规范霍夫曼编码

霍夫曼编码是一种无损数据压缩算法&#xff0c;其中数据中的每个字符都分配有可变长度的前缀代码。出现频率最低的字符获得最大代码&#xff0c;出现频率最高的字符获得最小代码。使用这种技术对数据进行编码非常简单且高效。但是&#xff0c;解码使用此技术生成的比特流效率低…

自然语言处理:第三十五章Embedding 测评榜单MTEB

文章链接: [2210.07316] MTEB: Massive Text Embedding Benchmark (arxiv.org) 项目地址: mteb:MTEB: Massive Text Embedding Benchmark - GitCode github地址: FlagEmbedding/C_MTEB at master FlagOpen/FlagEmbedding (github.com) Hugging Face Leadboard: MTEB Leader…

『SD』ControlNet基础讲解

本文简介 在学习和使用『Stable Diffusion』的过程中&#xff0c;『ControlNet』是一个不可忽视的关键组件。『ControlNet』是一个用于增强图像生成过程可控性的强大工具&#xff0c;允许用户通过提供特定的控制图像来精确指导生成结果。本文将讲解 『ControlNet』的基本概念。…

PHP杂货铺家庭在线记账理财管理系统源码

家庭在线记帐理财系统&#xff0c;让你对自己的开支了如指掌&#xff0c;图形化界面操作更简单&#xff0c;非常适合家庭理财、记账&#xff0c;系统界面简洁优美&#xff0c;操作直观简单&#xff0c;非常容易上手。 安装说明&#xff1a; 1、上传到网站根目录 2、用phpMyad…

目前市面上DIY高端空心耳机壳使用的透明原材料是什么?

目前市面上DIY高端空心耳机壳使用的透明原材料是什么&#xff1f; DIY制作耳机壳的UV树脂胶是一种单组份、通过紫外线光固化的胶粘剂&#xff0c;具有低能量固化、收缩低、发热量低、高透明、耐盐酸、耐黄变好、高硬度、韧性好、成型好等特点。这种胶粘剂非常适合用于制作耳机壳…

python-基础篇-文件和异常

文章目录 文件和异常读写文本文件读写二进制文件读写JSON文件 文件和异常 实际开发中常常会遇到对数据进行持久化操作的场景&#xff0c;而实现数据持久化最直接简单的方式就是将数据保存到文件中。说到“文件”这个词&#xff0c;可能需要先科普一下关于文件系统的知识&#…

Chromium源码阅读:从页面加载到元素展示(1)

​ 从&#xff1c;p&#xff1e;hello world&#xff1c;/p&#xff1e;.html到界面上的hello world 今天&#xff0c;我们一起来看看一个html元素&#xff0c;是如何绘制到界面上。我们选择了最简单的场景&#xff0c;便于快速掌握总体的流程&#xff0c;加深之前阅读知识的…

深入理解并打败C语言难关之一————指针(4)

前言&#xff1a; 我们在前面的几讲中已经讲了指针的很多内容了&#xff0c;现在我们开始层层递进&#xff0c;要探寻更多的指针喽&#xff0c;不多废话了&#xff0c;直接进入正题&#xff0c;开始今天的指针之旅喽&#xff01; 目录&#xff1a; 1.字符指针变量 1.1常量字符…

除了程序员,你又是谁呢?别说!保护自己能量最好的方式——早读(逆天打工人爬取热门微信文章解读)

你很困的时候&#xff0c;会不会遵循本心直接睡觉呢&#xff1f; 引言Python 代码第一篇 洞见 保护自己能量最好的方式第二篇 视频新闻结尾 引言 现在真的是越来越遵循本心了 昨天晚上10点多 觉得好困 但是又没有洗澡 然后就想着算了 躺一个 没想到一躺 早上6点了 起来速速洗刷…