【GD32F303红枫派使用手册】第十六节 USART-DMA串口收发实验

16.1 实验内容

通过本实验主要学习以下内容:

  • 串口DMA工作原理
  • 使用DMA进行串口收发

16.2 实验原理

16.2.1 串口DMA工作原理

在前面ADC章节中,我们介绍了DMA的工作原理,这里就不多做介绍。从GD32F303用户手册中可以查到,各串口的TX和RX分别对应DMA的不同通道,比如USART0的TX对应DMA0的通道3,而RX对应DMA0的通道4。

当需要使用DMA发送时,需要配置DMA工作为内存到外设的模式,DMA目标地址需要设置为串口的数据寄存器,当DMA使能后,一旦串口的TBE(发送空)标志位为1,则DMA自动从内存中搬运数据到串口数据寄存器中。

当需要使用DMA接受时,需要配置DMA工作为外设到内存的模式,DMA的源地址需要设置为串口的数据寄存器,当DMA使能,一旦串口收到一个字节数据,RBNE(接受非空)标志位为1,则DMA自动将数据寄存器中的数据搬运到内存中。

16.2.2 串口寄存器介绍

串口有几个非常重要的寄存器需要读者理解,这里单独用一个章节来介绍。

数据寄存器(USART_DATA)

该寄存器虽然只有一个,但内部是映射为发送和接受两个寄存器。

发送时,除了发送数据寄存器,还有一个移位寄存器,当数据写入数据寄存器中,移位寄存器空闲的情况下,数据从数据寄存器中转移到移位寄存器,移位寄存器按照低bit——高bit的顺序将数据移位到IO口上。

接收时,接收到的数据保存在数据寄存器中,CPU或DMA可以从该寄存器中读接收到的数据。

状态寄存器0(USART_STAT0  )

我们需要特别理解TBE、TC、RBNE、IDLE、OREE这几位。

  1. TBE(发送空):这个位置“1”表示现在可以往数据寄存器中写数据了,当移位寄存器空闲时,写入到数据寄存器中的数据则会转移到移位寄存器中,串口开始对外发送数据;
  1. TC(发送完成):发送数据时,当数据寄存器和移位寄存器都为空时,表示所有的数据都已经完成了,则TC置“1”,所以当连续发数据时,最后一个字节从移位寄存器中发送完,TC才会置起。
  1. RBNE(接受非空):当串口接受到一个字节数据,RBNE置“1”,此时CPU可以去数据寄存器中取数据,当使用了DMA接受,DMA自动将数据寄存器中数据搬走,当数据寄存器数据被读走/搬走,RBNE位自动清“0”;
  1. IDLE(空闲):该标志位用于检测接受空闲,当串口接受最后一个字节后,再往后一个字节时间内,没有接受到新的数据,则该位置“1”;

IDLE一般用于串口DMA接受中,DMA接受中,MCU无法知道发送方的数据个数,所以可以通过判断IDLE位(或IDLE中断)来判断发送方一帧数据发送结束了。

  1. OREE(溢出错误):当RBNE置位的情况,又接收到一个字节数据,则OREE位置“1”。

16.3 硬件设计

本实验使用DMA进行串口发送和接收,仍然使用USB转UART接口,硬件设计见上一章。

16.4 代码解析

16.4.1 串口DMA发送函数

在driver_uart.c中定义了串口DMA发送函数driver_uart_dma_transmit:

C
Drv_Err driver_uart_dma_transmit(typdef_uart_struct *uartx,uint8_t *pbuff,uint16_t length)
{
    Drv_Err uart_state=DRV_ERROR;
    
    uint32_t timeout = driver_tick;    
    while(uartx->uart_control.Com_Flag.Bits.SendState==1){
        if((timeout+UART_TIMEOUT_MS) <= driver_tick) {              
            uartx->uart_control.Com_Flag.Bits.SendState=0;
            return DRV_ERROR;        
        } 
    }      
    uartx->uart_control.Com_Flag.Bits.SendSucess=0;
    uartx->uart_control.Com_Flag.Bits.SendState=1;    
    uartx->uart_control.p_Send=pbuff;
    uartx->uart_control.SendSize=length;
    uartx->uart_control.SendCount=0;    
    uart_state=driver_dma_flag_wait_timeout(uartx->uart_tx_dma,DMA_FLAG_FTF,SET);     
    usart_dma_transmit_config(uartx->uart_x,USART_DENT_DISABLE);    
    driver_dma_start(uartx->uart_tx_dma,pbuff,length);    
    usart_flag_clear(uartx->uart_x,USART_FLAG_TC);    
    usart_dma_transmit_config(uartx->uart_x,USART_DENT_ENABLE);    
    usart_interrupt_enable(uartx->uart_x,USART_INT_TC);
    return uart_state;    
}

 16.4.2 串口DMA接收函数

在driver_uart.c中定义了串口DMA接收函数driver_uart_dma_receive:

C
Drv_Err driver_uart_dma_receive(typdef_uart_struct *uartx,uint8_t *pbuff,uint16_t length)
{
    Drv_Err uart_state=DRV_SUCCESS; 
    uint32_t timeout = driver_tick; 
    while(uartx->uart_control.Com_Flag.Bits.RecState==1){
        if((timeout+UART_TIMEOUT_MS) <= driver_tick) {              
            uartx->uart_control.Com_Flag.Bits.RecState=0;
            return DRV_ERROR;        
        } 
    }    
    uartx->uart_control.Com_Flag.Bits.RecSuccess=0;
    uartx->uart_control.Com_Flag.Bits.RecState=1;
    uartx->uart_control.p_Rec=pbuff;
    uartx->uart_control.RecSize=length;
    uartx->uart_control.RecCount=0;       
    usart_dma_receive_config(uartx->uart_x,USART_DENR_DISABLE);    
    driver_dma_start(uartx->uart_rx_dma,pbuff,length);
    USART_STAT0(uartx->uart_x);
    usart_data_receive(uartx->uart_x);
    usart_interrupt_flag_clear(uartx->uart_x,USART_INT_FLAG_IDLE);    
    usart_interrupt_enable(uartx->uart_x,USART_INT_IDLE);        
    usart_dma_receive_config(uartx->uart_x,USART_DENR_ENABLE);  
    return uart_state;     
}

16.4.3 main函数实现

以下为main函数代码:

C
int main(void)
{
    delay_init(); 

    //初始化UART为DMA模式,注册接受完成(IDLE)回调函数
    BOARD_UART.uart_mode_tx=MODE_DMA;
    BOARD_UART.uart_mode_rx=MODE_DMA;
    BOARD_UART.uart_idle_callback=user_receive_complete_callback;       
    bsp_uart_init(&BOARD_UART);
    nvic_irq_enable(USART0_IRQn,2,0); 
    delay_ms(1000);
    printf("uart dma mode sends and receives loopback packets of indefinite length.\r\n"); 

    //配置UART接受,最长100byte
    driver_uart_dma_receive(&BOARD_UART,uart_rec_buff,100);
    
        while (1)
        {
        //查询到接受完成回调函数标志
        if(uart_receive_complete_flag==SET)
        {
            uart_receive_complete_flag=RESET;
            
            //发送刚接受到的数据
            driver_uart_dma_transmit(&BOARD_UART,uart_send_buff,uart_receive_count);             
        }
        }
}

 本例程main函数首先进行了延时函数初始化,再初始化UART为DMA模式,接着配置串口BOARD_UART,开启串口中断NVIC,这里使用到了IDLE中断,用来接受不定长数据,然后配置串口DMA接受,最长100个字节,所以我们可以给串口发送100个字节以下长度的数据。在while(1)循环中循环查询uart_receive_complete_flag标志位,当该标志位为“SET”时,表示IDLE中断被触发,一帧数据接受完,最后将接收到的帧数据通过DMA发送方式原封不动发送到串口上。

16.4.4 中断函数

在bsp_uart.c中定义了串口中断处理函数

C
void USART0_IRQHandler(void)
{
    driver_uart_int_handler(&BOARD_UART);
}

在driver_uart.c中定义了driver_uart_int_handler函数:

C
Drv_Err driver_uart_int_handler(typdef_uart_struct *uartx)
{   
    Drv_Err uart_state=DRV_SUCCESS;    
    if(usart_interrupt_flag_get(uartx->uart_x,USART_INT_FLAG_RBNE)!=RESET)
    {
        if(uartx->uart_control.RecCount < uartx->uart_control.RecSize){
            uartx->uart_control.p_Rec[uartx->uart_control.RecCount]=usart_data_receive(uartx->uart_x); 
            uartx->uart_control.RecCount++;            
        }
        else{
            usart_data_receive(uartx->uart_x);
            uart_state=DRV_ERROR;
            //err 溢出
        }
        if(uartx->uart_rbne_callback!=NULL){
            uartx->uart_rbne_callback(uartx);
        }        
        //callback
        if(uartx->uart_control.RecCount == uartx->uart_control.RecSize){
            uartx->uart_control.Com_Flag.Bits.RecSuccess=1;            
            uartx->uart_control.Com_Flag.Bits.RecState=0; 
            uartx->uart_control.RecCount=0;            
        }        
    }       
    if(usart_interrupt_flag_get(uartx->uart_x,USART_INT_FLAG_IDLE)!=RESET)
    {
        usart_interrupt_flag_clear(uartx->uart_x,USART_INT_FLAG_IDLE);
        USART_STAT0(uartx->uart_x);
        USART_DATA(uartx->uart_x);
        
        if( (uartx->uart_mode_rx==MODE_INT && uartx->uart_control.RecCount>0) \
            ||(uartx->uart_mode_rx==MODE_DMA && dma_transfer_number_get(uartx->uart_rx_dma->dmax,uartx->uart_rx_dma->dma_chx)!=uartx->uart_control.RecSize))
        {
            uartx->uart_control.Com_Flag.Bits.RecSuccess=1;
            uartx->uart_control.Com_Flag.Bits.RecState=0;              
            
            if(uartx->uart_mode_rx==MODE_DMA){
                uartx->uart_control.RecCount=uartx->uart_control.RecSize-dma_transfer_number_get(uartx->uart_rx_dma->dmax,uartx->uart_rx_dma->dma_chx);            
            }
            //callback            
            if(uartx->uart_idle_callback!=NULL){
                uartx->uart_idle_callback(uartx);
            }                                
        }        
            
    } 
    
    if(usart_interrupt_flag_get(uartx->uart_x,USART_INT_FLAG_TBE)!=RESET)
    {
        usart_data_transmit(uartx->uart_x,uartx->uart_control.p_Send[uartx->uart_control.SendCount]);
        uartx->uart_control.SendCount++;
        
        if(uartx->uart_tbe_callback!=NULL){
            uartx->uart_tbe_callback(uartx);
        } 
        
        if(uartx->uart_control.SendCount >= uartx->uart_control.SendSize)
        {
            uartx->uart_control.SendCount=0;            
            usart_interrupt_disable(uartx->uart_x, USART_INT_TBE);
            usart_interrupt_enable(uartx->uart_x, USART_INT_TC);
        }
    } 

    if(usart_interrupt_flag_get(uartx->uart_x,USART_INT_FLAG_TC)!=RESET)
    {
        usart_interrupt_disable(uartx->uart_x, USART_INT_TC);          
        usart_flag_clear(uartx->uart_x,USART_FLAG_TC);  

        if( !(uartx->uart_mode_rx==MODE_DMA && dma_transfer_number_get(uartx->uart_tx_dma->dmax,uartx->uart_tx_dma->dma_chx)!=0) )
        {    
            uartx->uart_control.Com_Flag.Bits.SendSucess=1;            
            uartx->uart_control.Com_Flag.Bits.SendState=0; 
            
            if(uartx->uart_tc_callback!=NULL){
                uartx->uart_tc_callback(uartx);
            }         
            
            uartx->uart_control.SendCount=0; 
        }
    }  

    if(usart_flag_get(uartx->uart_x,USART_FLAG_ORERR)==SET)
    {
        usart_flag_clear(uartx->uart_x,USART_FLAG_ORERR);        
        USART_STAT0(uartx->uart_x);
        USART_DATA(uartx->uart_x);
        uart_state=DRV_ERROR;
    }

    return uart_state;     

}

16.5 实验结果

使用USB-TypeC线,连接电脑和板上USB to UART口后,使用串口调试助手发送一帧数据到MCU,MCU会将这帧数据回发到串口调试助手中。

 

由聚沃科技原创,来源于【红枫派开发板】第十六讲 USART-DMA串口收发实验 - 苏州聚沃电子科技有限公司 (gd32bbs.com) 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/710381.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

四轴飞行器、无人机(STM32、NRF24L01)

一、简介 此电路由STM32为主控芯片&#xff0c;NRF24L01、MPU6050为辅,当接受到信号时&#xff0c;处理对应的指令。 二、实物图 三、部分代码 void FlightPidControl(float dt) { volatile static uint8_t statusWAITING_1; switch(status) { case WAITING_1: //等待解锁 if…

LED显示屏色差处理方法

LED显示屏以其高亮度、低功耗和长寿命等优点&#xff0c;在广告、信息发布和舞台背景等领域得到广泛应用。然而&#xff0c;由于生产批次的不同&#xff0c;LED显示屏在亮度和色度上可能存在差异&#xff0c;影响显示效果。本文将探讨如何通过逐点校正技术来解决这一问题。 逐点…

【C++】和【预训练模型】实现【机器学习】【图像分类】的终极指南

目录 &#x1f497;1. 准备工作和环境配置&#x1f495; &#x1f496;安装OpenCV&#x1f495; &#x1f496;安装Dlib&#x1f495; 下载并编译TensorFlow C API&#x1f495; &#x1f497;2. 下载和配置预训练模型&#x1f495; &#x1f496;2.1 下载预训练的ResNet…

python-基础篇-函数-是什么

文章目录 定义一&#xff1a;如果在开发程序时&#xff0c;需要某块代码多次执行。为了提高编写的效率以及更好的维护代码&#xff0c;需要把具有独立功能的代码块组织为一个小模块&#xff0c;这就是函数。定义一&#xff1a;我们把一些数据喂给函数&#xff0c;让他内部消化&…

七、IP路由原理和路由引入

目录 一、IP路由原理 二、路由引入 2.1、双点双向路由引入 2.2、路由回灌 三、路由策略与路由控制 路由匹配工具&#xff08;规则&#xff09; ACL IP前缀列表 路由控制工具&#xff08;控制&#xff09; 策略工具1 策略工具2 搭配组合 组…

JAVA-CopyOnWrite并发集合

文章目录 JAVA并发集合1_实现原理2_什么是CopyOnWrite?3_CopyOnWriteArrayList的原理4_CopyOnWriteArraySet5_使用场景6_总结 JAVA并发集合 从Java5开始&#xff0c;Java在java.util.concurrent包下提供了大量支持高效并发访问的集合类&#xff0c;它们既能包装良好的访问性能…

【字符函数】

接下来介绍部分字符函数测试 2. 字符转换函数 1.字符分类函数 1.1iscntrl 注&#xff1a;任何控制字符 检查是否有控制字符 符合为真 int main() {int i 0;char str[] "first line \n second line \n";//判断是否遇到控制字符while (!iscntrl(str[i])){p…

springboot网上书店管理系统-计算机毕业设计源码03780

摘 要 网上书店管理系统采用B/S结构、java开发语言、以及Mysql数据库等技术。系统主要分为管理员和用户两部分&#xff0c;管理员管理主要功能包括&#xff1a;首页、站点管理&#xff08;轮播图&#xff09;用户管理&#xff08;管理员、注册用户&#xff09;内容管理&#x…

51单片机STC89C52RC——代码编译

1&#xff0c;勾选 “Create HEX file” 2&#xff0c;编译

【智源大会2024】(一)智源技术专题

智源的全家桶&#xff1a; 微调数据相关&#xff1a; 1.千万级数据集: BAAI创建了首个千万级别的高质量开源指令微调数据集。 2.模型性能与数据质量: 强调了模型性能与数据质量之间的高度相关性。 3.技术亮点: 使用了高质量的指令数据筛选与合成技术。这些技术显著提升了模型…

效率翻倍!ComfyUI 必装的工作流+模型管理插件 Workspace Manager

一、Workspace Manager 安装方式 插件 Github 网址&#xff1a; https://github.com/11cafe/comfyui-workspace-manager 如果你没有安装 Workspace Manager 插件&#xff0c;可以通过以下 2 种方式安装&#xff1a; ① 通过 ComfyUI Manager 安装&#xff08;推荐&#xff0…

AI办公自动化:kimi批量搜索提取PDF文档中特定文本内容

工作任务&#xff1a;PDF文档中有资料来源这一行&#xff0c;比如&#xff1a; 资料来源&#xff1a;moomoo tech、The Information、Bloomberg、Reuters&#xff0c;浙商证券研究所 数据来源&#xff1a;CSDN、浙商证券研究所 数据来源&#xff1a;CSDN、arXiv、浙商证券研…

OpenGL3.3_C++_Windows(7)

演示 最终演示效果 ​​​​ 冯氏光照 光照原理&#xff1a;对于向量相乘默认为点乘&#xff0c;如果*lightColor(1.0f, 1.0f, 1.0f);白光&#xff0c;值不变物体的颜色显示原理&#xff1a;不被物体吸收的光反射&#xff0c;也就是由白光分解后的一部分&#xff0c;因此&…

力扣 面试题17.04.消失的数字

数组nums包含从0到n的所有整数&#xff0c;但其中缺了一个。请编写代码找出那个缺失的整数。你有办法在O(n)时间内完成吗&#xff1f; 示例 1&#xff1a; 输入&#xff1a;[3,0,1] 输出&#xff1a;2 示例 2&#xff1a; 输入&#xff1a;[9,6,4,2,3,5,7,0,1] 输出&#x…

JavaScript 规范霍夫曼编码

霍夫曼编码是一种无损数据压缩算法&#xff0c;其中数据中的每个字符都分配有可变长度的前缀代码。出现频率最低的字符获得最大代码&#xff0c;出现频率最高的字符获得最小代码。使用这种技术对数据进行编码非常简单且高效。但是&#xff0c;解码使用此技术生成的比特流效率低…

自然语言处理:第三十五章Embedding 测评榜单MTEB

文章链接: [2210.07316] MTEB: Massive Text Embedding Benchmark (arxiv.org) 项目地址: mteb:MTEB: Massive Text Embedding Benchmark - GitCode github地址: FlagEmbedding/C_MTEB at master FlagOpen/FlagEmbedding (github.com) Hugging Face Leadboard: MTEB Leader…

『SD』ControlNet基础讲解

本文简介 在学习和使用『Stable Diffusion』的过程中&#xff0c;『ControlNet』是一个不可忽视的关键组件。『ControlNet』是一个用于增强图像生成过程可控性的强大工具&#xff0c;允许用户通过提供特定的控制图像来精确指导生成结果。本文将讲解 『ControlNet』的基本概念。…

PHP杂货铺家庭在线记账理财管理系统源码

家庭在线记帐理财系统&#xff0c;让你对自己的开支了如指掌&#xff0c;图形化界面操作更简单&#xff0c;非常适合家庭理财、记账&#xff0c;系统界面简洁优美&#xff0c;操作直观简单&#xff0c;非常容易上手。 安装说明&#xff1a; 1、上传到网站根目录 2、用phpMyad…

目前市面上DIY高端空心耳机壳使用的透明原材料是什么?

目前市面上DIY高端空心耳机壳使用的透明原材料是什么&#xff1f; DIY制作耳机壳的UV树脂胶是一种单组份、通过紫外线光固化的胶粘剂&#xff0c;具有低能量固化、收缩低、发热量低、高透明、耐盐酸、耐黄变好、高硬度、韧性好、成型好等特点。这种胶粘剂非常适合用于制作耳机壳…

python-基础篇-文件和异常

文章目录 文件和异常读写文本文件读写二进制文件读写JSON文件 文件和异常 实际开发中常常会遇到对数据进行持久化操作的场景&#xff0c;而实现数据持久化最直接简单的方式就是将数据保存到文件中。说到“文件”这个词&#xff0c;可能需要先科普一下关于文件系统的知识&#…