目标检测YOLOv3基于DarkNet53模型测试-笔记

目标检测YOLOv3基于DarkNet53模型测试-笔记

预测和试测结果:
在这里插入图片描述
预测代码如下所示:
testInsects.py

#YOLOv3网模型测试-单图片文件测试并显示测试结果
import time
import os
import paddle
import numpy as np
import cv2
import random
from PIL import Image, ImageEnhance
import xml.etree.ElementTree as ET
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.image import imread
import YOLOv3  as d

ANCHORS = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
ANCHOR_MASKS = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
VALID_THRESH = 0.01
NMS_TOPK = 400
NMS_POSK = 100
NMS_THRESH = 0.45
NUM_CLASSES = 7
#
# 定义画图函数
INSECT_NAMES = ['Boerner', 'Leconte', 'Linnaeus', 
                'acuminatus', 'armandi', 'coleoptera', 'linnaeus']

# 定义画矩形框的函数 
def draw_rectangle(currentAxis, bbox, edgecolor = 'k', facecolor = 'y', fill=False, linestyle='-'):
    # currentAxis,坐标轴,通过plt.gca()获取
    # bbox,边界框,包含四个数值的list, [x1, y1, x2, y2]
    # edgecolor,边框线条颜色
    # facecolor,填充颜色
    # fill, 是否填充
    # linestype,边框线型
    # patches.Rectangle需要传入左上角坐标、矩形区域的宽度、高度等参数
    rect=patches.Rectangle((bbox[0], bbox[1]), bbox[2]-bbox[0]+1, bbox[3]-bbox[1]+1, linewidth=1,
                           edgecolor=edgecolor,facecolor=facecolor,fill=fill, linestyle=linestyle)
    currentAxis.add_patch(rect)

# 定义绘制预测结果的函数
def draw_results(result, filename, draw_thresh=0.5):
    plt.figure(figsize=(10, 10))
    im = imread(filename)
    plt.imshow(im)
    currentAxis=plt.gca()
    colors = ['r', 'g', 'b', 'k', 'y', 'c', 'purple']
    for item in result:
        box = item[2:6]
        label = int(item[0])
        name = INSECT_NAMES[label]
        if item[1] > draw_thresh:
            draw_rectangle(currentAxis, box, edgecolor = colors[label])
            plt.text(box[0], box[1], name, fontsize=12, color=colors[label])

# 读取单张测试图片
def single_image_data_loader(filename, test_image_size=608, mode='test'):
    """
    加载测试用的图片,测试数据没有groundtruth标签
    """
    batch_size= 1
    def reader():
        batch_data = []
        img_size = test_image_size
        file_path = os.path.join(filename)
        img = cv2.imread(file_path)
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        H = img.shape[0]
        W = img.shape[1]
        img = cv2.resize(img, (img_size, img_size))

        mean = [0.485, 0.456, 0.406]
        std = [0.229, 0.224, 0.225]
        mean = np.array(mean).reshape((1, 1, -1))
        std = np.array(std).reshape((1, 1, -1))
        out_img = (img / 255.0 - mean) / std
        out_img = out_img.astype('float32').transpose((2, 0, 1))
        img = out_img #np.transpose(out_img, (2,0,1))
        im_shape = [H, W]

        batch_data.append((image_name.split('.')[0], img, im_shape))
        if len(batch_data) == batch_size:
            yield d.make_test_array(batch_data)
            batch_data = []

    return reader
#
if __name__ == '__main__':
    image_name = './ObjectCheck/data/insects/test/images/2592.jpeg'     #2599.jpeg    2592.jpeg   /3157.jpeg
    params_file_path = './yolo_epoch50.pdparams'

    model = d.YOLOv3(num_classes=NUM_CLASSES)
    model_state_dict = paddle.load(params_file_path)
    model.load_dict(model_state_dict)
    model.eval()

    total_results = []
    test_loader = single_image_data_loader(image_name, mode='test')
    for i, data in enumerate(test_loader()):
        img_name, img_data, img_scale_data = data
        img = paddle.to_tensor(img_data)
        img_scale = paddle.to_tensor(img_scale_data)

        outputs = model.forward(img)
        bboxes, scores = model.get_pred(outputs,
                                 im_shape=img_scale,
                                 anchors=ANCHORS,
                                 anchor_masks=ANCHOR_MASKS,
                                 valid_thresh = VALID_THRESH)

        bboxes_data = bboxes.numpy()
        scores_data = scores.numpy()
        results = d.multiclass_nms(bboxes_data, scores_data,
                      score_thresh=VALID_THRESH, 
                      nms_thresh=NMS_THRESH, 
                      pre_nms_topk=NMS_TOPK, 
                      pos_nms_topk=NMS_POSK)

result = results[0]
print(result.shape)
draw_results(result, image_name, draw_thresh=0.5)

plt.show()

训练测试代码如下所示:
trans.py

############# 这段代码在本地机器上运行请慎重,容易造成死机#######################
import time
import os
import paddle
import numpy as np
import cv2
import random
from PIL import Image, ImageEnhance
import xml.etree.ElementTree as ET
import YOLOv3  as d
#数据处理
# 创建数据读取类     

ANCHORS = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]

ANCHOR_MASKS = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]

IGNORE_THRESH = .7
NUM_CLASSES = 7

def get_lr(base_lr = 0.0001, lr_decay = 0.1):
    bd = [10000, 20000]
    lr = [base_lr, base_lr * lr_decay, base_lr * lr_decay * lr_decay]
    learning_rate = paddle.optimizer.lr.PiecewiseDecay(boundaries=bd, values=lr)
    return learning_rate


if __name__ == '__main__':
    TRAINDIR = './ObjectCheck/data/insects/train'
    TESTDIR = './ObjectCheck/data/insects/test'
    VALIDDIR = './ObjectCheck/data/insects/val'
    paddle.device.set_device("gpu:0")
    # 创建数据读取类
    train_dataset = d.TrainDataset(TRAINDIR, mode='train')
    valid_dataset = d.TrainDataset(VALIDDIR, mode='valid')
    test_dataset = d.TrainDataset(VALIDDIR, mode='valid')
    # 使用paddle.io.DataLoader创建数据读取器,并设置batchsize,进程数量num_workers等参数
    train_loader = paddle.io.DataLoader(train_dataset, batch_size=10, shuffle=True, num_workers=0, drop_last=True, use_shared_memory=False)
    valid_loader = paddle.io.DataLoader(valid_dataset, batch_size=10, shuffle=False, num_workers=0, drop_last=False, use_shared_memory=False)
    model = d.YOLOv3(num_classes = NUM_CLASSES)  #创建模型
    learning_rate = get_lr()
    opt = paddle.optimizer.Momentum(
                 learning_rate=learning_rate,
                 momentum=0.9,
                 weight_decay=paddle.regularizer.L2Decay(0.0005),
                 parameters=model.parameters())  #创建优化器
    # opt = paddle.optimizer.Adam(learning_rate=learning_rate, weight_decay=paddle.regularizer.L2Decay(0.0005), parameters=model.parameters())

    MAX_EPOCH = 200
    for epoch in range(MAX_EPOCH):
        for i, data in enumerate(train_loader()):
            img, gt_boxes, gt_labels, img_scale = data
            gt_scores = np.ones(gt_labels.shape).astype('float32')
            gt_scores = paddle.to_tensor(gt_scores)
            img = paddle.to_tensor(img)
            gt_boxes = paddle.to_tensor(gt_boxes)
            gt_labels = paddle.to_tensor(gt_labels)
            outputs = model(img)  #前向传播,输出[P0, P1, P2]
            loss = model.get_loss(outputs, gt_boxes, gt_labels, gtscore=gt_scores,
                                  anchors = ANCHORS,
                                  anchor_masks = ANCHOR_MASKS,
                                  ignore_thresh=IGNORE_THRESH,
                                  use_label_smooth=False)        # 计算损失函数

            loss.backward()    # 反向传播计算梯度
            opt.step()  # 更新参数
            opt.clear_grad()
            if i % 10 == 0:
                timestring = time.strftime("%Y-%m-%d %H:%M:%S",time.localtime(time.time()))
                print('{}[TRAIN]epoch {}, iter {}, output loss: {}'.format(timestring, epoch, i, loss.numpy()))

        # save params of model
        if (epoch % 5 == 0) or (epoch == MAX_EPOCH -1):
            paddle.save(model.state_dict(), 'yolo_epoch{}'.format(epoch))

        # 每个epoch结束之后在验证集上进行测试
        model.eval()
        for i, data in enumerate(valid_loader()):
            img, gt_boxes, gt_labels, img_scale = data
            gt_scores = np.ones(gt_labels.shape).astype('float32')
            gt_scores = paddle.to_tensor(gt_scores)
            img = paddle.to_tensor(img)
            gt_boxes = paddle.to_tensor(gt_boxes)
            gt_labels = paddle.to_tensor(gt_labels)
            outputs = model(img)
            loss = model.get_loss(outputs, gt_boxes, gt_labels, gtscore=gt_scores,
                                  anchors = ANCHORS,
                                  anchor_masks = ANCHOR_MASKS,
                                  ignore_thresh=IGNORE_THRESH,
                                  use_label_smooth=False)
            if i % 1 == 0:
                timestring = time.strftime("%Y-%m-%d %H:%M:%S",time.localtime(time.time()))
                print('{}[VALID]epoch {}, iter {}, output loss: {}'.format(timestring, epoch, i, loss.numpy()))
        model.train()

'''
#输出结果: 
PS E:\project\python> & D:/ProgramData/Anaconda3/python.exe e:/project/python/ObjectCheck/train.py
{'Boerner': 0, 'Leconte': 1, 'Linnaeus': 2, 'acuminatus': 3, 'armandi': 4, 'coleoptera': 5, 'linnaeus': 6}
W0808 17:32:42.379954 11784 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 6.1, Driver API Version: 12.2, Runtime API Version: 10.2
W0808 17:32:42.388298 11784 gpu_resources.cc:91] device: 0, cuDNN Version: 7.6.
e:\project\python\ObjectCheck\YOLOv3.py:525: DeprecationWarning: LANCZOS is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.LANCZOS instead.
  crop[1] + crop[3])).resize(img.size, Image.LANCZOS)
D:\ProgramData\Anaconda3\lib\site-packages\paddle\nn\layer\norm.py:712: UserWarning: When training, we now always track global mean and variance.
  warnings.warn(
2023-08-08 17:33:00[TRAIN]epoch 0, iter 0, output loss: [17514.3]
2023-08-08 17:37:04[TRAIN]epoch 0, iter 10, output loss: [664.46826]
2023-08-08 17:41:14[TRAIN]epoch 0, iter 20, output loss: [178.863]
2023-08-08 17:45:23[TRAIN]epoch 0, iter 30, output loss: [96.15729]
2023-08-08 17:49:20[TRAIN]epoch 0, iter 40, output loss: [126.4073]
2023-08-08 17:53:24[TRAIN]epoch 0, iter 50, output loss: [99.16821]
2023-08-08 17:57:51[TRAIN]epoch 0, iter 60, output loss: [78.51326]
2023-08-08 18:01:54[TRAIN]epoch 0, iter 70, output loss: [73.76933]
2023-08-08 18:06:02[TRAIN]epoch 0, iter 80, output loss: [95.99153]
2023-08-08 18:10:03[TRAIN]epoch 0, iter 90, output loss: [65.16132]
2023-08-08 18:14:08[TRAIN]epoch 0, iter 100, output loss: [65.93103]
2023-08-08 18:18:14[TRAIN]epoch 0, iter 110, output loss: [71.1369]
2023-08-08 18:22:22[TRAIN]epoch 0, iter 120, output loss: [75.29985]
2023-08-08 18:26:25[TRAIN]epoch 0, iter 130, output loss: [53.242706]
2023-08-08 18:30:28[TRAIN]epoch 0, iter 140, output loss: [54.256916]
2023-08-08 18:34:25[TRAIN]epoch 0, iter 150, output loss: [69.66019]
2023-08-08 18:38:15[TRAIN]epoch 0, iter 160, output loss: [65.595924]
2023-08-08 18:42:06[VALID]epoch 0, iter 0, output loss: [69.894264]
PS E:\project\python> 
'''       

模型和相关函数定义文件
JOLOv3.py

import time
import os
import paddle
import numpy as np
import cv2
import random
from PIL import Image, ImageEnhance
import xml.etree.ElementTree as ET
import paddle.nn.functional as F

#insect name to map number[0,6]
INSECT_NAMES = ['Boerner', 'Leconte', 'Linnaeus', 
                'acuminatus', 'armandi', 'coleoptera', 'linnaeus']

def get_insect_names():
    """
    return a dict, as following,
        {'Boerner': 0,
         'Leconte': 1,
         'Linnaeus': 2, 
         'acuminatus': 3,
         'armandi': 4,
         'coleoptera': 5,
         'linnaeus': 6
        }
    It can map the insect name into an integer label.
    """
    insect_category2id = {}
    for i, item in enumerate(INSECT_NAMES):
        insect_category2id[item] = i

    return insect_category2id

cname2cid = get_insect_names()
print(cname2cid)   #{'Boerner': 0, 'Leconte': 1, 'Linnaeus': 2, 'acuminatus': 3, 'armandi': 4, 'coleoptera': 5, 'linnaeus': 6}
#=======================================================================================

#网络模型设计
class YOLOv3(paddle.nn.Layer):
    def __init__(self, num_classes=7):
        super(YOLOv3,self).__init__()

        self.num_classes = num_classes
        # 提取图像特征的骨干代码
        self.block = DarkNet53_conv_body()
        self.block_outputs = []
        self.yolo_blocks = []
        self.route_blocks_2 = []
        # 生成3个层级的特征图P0, P1, P2
        for i in range(3):
            # 添加从ci生成ri和ti的模块
            yolo_block = self.add_sublayer(
                "yolo_detecton_block_%d" % (i),
                YoloDetectionBlock(
                                   ch_in=512//(2**i)*2 if i==0 else 512//(2**i)*2 + 512//(2**i),
                                   ch_out = 512//(2**i)))
            self.yolo_blocks.append(yolo_block)

            num_filters = 3 * (self.num_classes + 5)

            # 添加从ti生成pi的模块,这是一个Conv2D操作,输出通道数为3 * (num_classes + 5)
            block_out = self.add_sublayer(
                "block_out_%d" % (i),
                paddle.nn.Conv2D(in_channels=512//(2**i)*2,
                       out_channels=num_filters,
                       kernel_size=1,
                       stride=1,
                       padding=0,
                       weight_attr=paddle.ParamAttr(
                           initializer=paddle.nn.initializer.Normal(0., 0.02)),
                       bias_attr=paddle.ParamAttr(
                           initializer=paddle.nn.initializer.Constant(0.0),
                           regularizer=paddle.regularizer.L2Decay(0.))))
            self.block_outputs.append(block_out)
            if i < 2:
                # 对ri进行卷积
                route = self.add_sublayer("route2_%d"%i,
                                          ConvBNLayer(ch_in=512//(2**i),
                                                      ch_out=256//(2**i),
                                                      kernel_size=1,
                                                      stride=1,
                                                      padding=0))
                self.route_blocks_2.append(route)
            # 将ri放大以便跟c_{i+1}保持同样的尺寸
            self.upsample = Upsample()
    def forward(self, inputs):
        outputs = []
        blocks = self.block(inputs)
        for i, block in enumerate(blocks):
            if i > 0:
                # 将r_{i-1}经过卷积和上采样之后得到特征图,与这一级的ci进行拼接
                block = paddle.concat([route, block], axis=1)
            # 从ci生成ti和ri
            route, tip = self.yolo_blocks[i](block)
            # 从ti生成pi
            block_out = self.block_outputs[i](tip)
            # 将pi放入列表
            outputs.append(block_out)

            if i < 2:
                # 对ri进行卷积调整通道数
                route = self.route_blocks_2[i](route)
                # 对ri进行放大,使其尺寸和c_{i+1}保持一致
                route = self.upsample(route)

        return outputs

    def get_loss(self, outputs, gtbox, gtlabel, gtscore=None,
                 anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326],
                 anchor_masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]],
                 ignore_thresh=0.7,
                 use_label_smooth=False):
        """
        使用paddle.vision.ops.yolo_loss,直接计算损失函数,过程更简洁,速度也更快
        """
        self.losses = []
        downsample = 32
        for i, out in enumerate(outputs): # 对三个层级分别求损失函数
            anchor_mask_i = anchor_masks[i]
            loss = paddle.vision.ops.yolo_loss(
                    x=out,  # out是P0, P1, P2中的一个
                    gt_box=gtbox,  # 真实框坐标
                    gt_label=gtlabel,  # 真实框类别
                    gt_score=gtscore,  # 真实框得分,使用mixup训练技巧时需要,不使用该技巧时直接设置为1,形状与gtlabel相同
                    anchors=anchors,   # 锚框尺寸,包含[w0, h0, w1, h1, ..., w8, h8]共9个锚框的尺寸
                    anchor_mask=anchor_mask_i, # 筛选锚框的mask,例如anchor_mask_i=[3, 4, 5],将anchors中第3、4、5个锚框挑选出来给该层级使用
                    class_num=self.num_classes, # 分类类别数
                    ignore_thresh=ignore_thresh, # 当预测框与真实框IoU > ignore_thresh,标注objectness = -1
                    downsample_ratio=downsample, # 特征图相对于原图缩小的倍数,例如P0是32, P1是16,P2是8
                    use_label_smooth=False)      # 使用label_smooth训练技巧时会用到,这里没用此技巧,直接设置为False
            self.losses.append(paddle.mean(loss))  #mean对每张图片求和
            downsample = downsample // 2 # 下一级特征图的缩放倍数会减半
        return sum(self.losses) # 对每个层级求和
 
    def get_pred(self,
                 outputs,
                 im_shape=None,
                 anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326],
                 anchor_masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]],
                 valid_thresh = 0.01):
        downsample = 32
        total_boxes = []
        total_scores = []
        for i, out in enumerate(outputs):
            anchor_mask = anchor_masks[i]
            anchors_this_level = []
            for m in anchor_mask:
                anchors_this_level.append(anchors[2 * m])
                anchors_this_level.append(anchors[2 * m + 1])

            boxes, scores = paddle.vision.ops.yolo_box(
                   x=out,
                   img_size=im_shape,
                   anchors=anchors_this_level,
                   class_num=self.num_classes,
                   conf_thresh=valid_thresh,
                   downsample_ratio=downsample,
                   name="yolo_box" + str(i))
            total_boxes.append(boxes)
            total_scores.append(
                        paddle.transpose(
                        scores, perm=[0, 2, 1]))
            downsample = downsample // 2

        yolo_boxes = paddle.concat(total_boxes, axis=1)
        yolo_scores = paddle.concat(total_scores, axis=2)
        return yolo_boxes, yolo_scores

# 定义数据读取类,继承Paddle.io.Dataset
class TrainDataset(paddle.io.Dataset):
    def  __init__(self, datadir, mode='train'):
        self.datadir = datadir
        cname2cid = get_insect_names()
        self.records = get_annotations(cname2cid, datadir)
        self.img_size = 640  #get_img_size(mode)

    def __getitem__(self, idx):
        record = self.records[idx]
        # print("print: ", record)
        img, gt_bbox, gt_labels, im_shape = get_img_data(record, size=self.img_size)

        return img, gt_bbox, gt_labels, np.array(im_shape)

    def __len__(self):
        return len(self.records)

# 非极大值抑制
def nms(bboxes, scores, score_thresh, nms_thresh, pre_nms_topk, i=0, c=0):
    """
    nms
    """
    inds = np.argsort(scores)
    inds = inds[::-1]
    keep_inds = []
    while(len(inds) > 0):
        cur_ind = inds[0]
        cur_score = scores[cur_ind]
        # if score of the box is less than score_thresh, just drop it
        if cur_score < score_thresh:
            break

        keep = True
        for ind in keep_inds:
            current_box = bboxes[cur_ind]
            remain_box = bboxes[ind]
            iou = box_iou_xyxy(current_box, remain_box)
            if iou > nms_thresh:
                keep = False
                break
        if i == 0 and c == 4 and cur_ind == 951:
            print('suppressed, ', keep, i, c, cur_ind, ind, iou)
        if keep:
            keep_inds.append(cur_ind)
        inds = inds[1:]

    return np.array(keep_inds)

# 多分类非极大值抑制
def multiclass_nms(bboxes, scores, score_thresh=0.01, nms_thresh=0.45, pre_nms_topk=1000, pos_nms_topk=100):
    """
    This is for multiclass_nms
    """
    batch_size = bboxes.shape[0]
    class_num = scores.shape[1]
    rets = []
    for i in range(batch_size):
        bboxes_i = bboxes[i]
        scores_i = scores[i]
        ret = []
        for c in range(class_num):
            scores_i_c = scores_i[c]
            keep_inds = nms(bboxes_i, scores_i_c, score_thresh, nms_thresh, pre_nms_topk, i=i, c=c)
            if len(keep_inds) < 1:
                continue
            keep_bboxes = bboxes_i[keep_inds]
            keep_scores = scores_i_c[keep_inds]
            keep_results = np.zeros([keep_scores.shape[0], 6])
            keep_results[:, 0] = c
            keep_results[:, 1] = keep_scores[:]
            keep_results[:, 2:6] = keep_bboxes[:, :]
            ret.append(keep_results)
        if len(ret) < 1:
            rets.append(ret)
            continue
        ret_i = np.concatenate(ret, axis=0)
        scores_i = ret_i[:, 1]
        if len(scores_i) > pos_nms_topk:
            inds = np.argsort(scores_i)[::-1]
            inds = inds[:pos_nms_topk]
            ret_i = ret_i[inds]

        rets.append(ret_i)

    return rets

# 计算IoU,矩形框的坐标形式为xyxy,这个函数会被保存在box_utils.py文件中
def box_iou_xyxy(box1, box2):
    # 获取box1左上角和右下角的坐标
    x1min, y1min, x1max, y1max = box1[0], box1[1], box1[2], box1[3]
    # 计算box1的面积
    s1 = (y1max - y1min + 1.) * (x1max - x1min + 1.)
    # 获取box2左上角和右下角的坐标
    x2min, y2min, x2max, y2max = box2[0], box2[1], box2[2], box2[3]
    # 计算box2的面积
    s2 = (y2max - y2min + 1.) * (x2max - x2min + 1.)
    
    # 计算相交矩形框的坐标
    xmin = np.maximum(x1min, x2min)
    ymin = np.maximum(y1min, y2min)
    xmax = np.minimum(x1max, x2max)
    ymax = np.minimum(y1max, y2max)
    # 计算相交矩形行的高度、宽度、面积
    inter_h = np.maximum(ymax - ymin + 1., 0.)
    inter_w = np.maximum(xmax - xmin + 1., 0.)
    intersection = inter_h * inter_w
    # 计算相并面积
    union = s1 + s2 - intersection
    # 计算交并比
    iou = intersection / union
    return iou
#
def get_annotations(cname2cid, datadir):
    filenames = os.listdir(os.path.join(datadir, 'annotations', 'xmls'))
    records = []
    ct = 0
    for fname in filenames:
        fid = fname.split('.')[0]
        fpath = os.path.join(datadir, 'annotations', 'xmls', fname)
        img_file = os.path.join(datadir, 'images', fid + '.jpeg')
        tree = ET.parse(fpath)

        if tree.find('id') is None:
            im_id = np.array([ct])
        else:
            im_id = np.array([int(tree.find('id').text)])

        objs = tree.findall('object')
        im_w = float(tree.find('size').find('width').text)
        im_h = float(tree.find('size').find('height').text)
        gt_bbox = np.zeros((len(objs), 4), dtype=np.float32)
        gt_class = np.zeros((len(objs), ), dtype=np.int32)
        is_crowd = np.zeros((len(objs), ), dtype=np.int32)
        difficult = np.zeros((len(objs), ), dtype=np.int32)
        for i, obj in enumerate(objs):
            cname = obj.find('name').text
            gt_class[i] = cname2cid[cname]
            _difficult = int(obj.find('difficult').text)
            x1 = float(obj.find('bndbox').find('xmin').text)
            y1 = float(obj.find('bndbox').find('ymin').text)
            x2 = float(obj.find('bndbox').find('xmax').text)
            y2 = float(obj.find('bndbox').find('ymax').text)
            x1 = max(0, x1)
            y1 = max(0, y1)
            x2 = min(im_w - 1, x2)
            y2 = min(im_h - 1, y2)
            # 这里使用xywh格式来表示目标物体真实框
            gt_bbox[i] = [(x1+x2)/2.0 , (y1+y2)/2.0, x2-x1+1., y2-y1+1.]
            is_crowd[i] = 0
            difficult[i] = _difficult

        voc_rec = {
            'im_file': img_file,
            'im_id': im_id,
            'h': im_h,
            'w': im_w,
            'is_crowd': is_crowd,
            'gt_class': gt_class,
            'gt_bbox': gt_bbox,
            'gt_poly': [],
            'difficult': difficult
            }
        if len(objs) != 0:
            records.append(voc_rec)
        ct += 1
    return records

def get_bbox(gt_bbox, gt_class):
    # 对于一般的检测任务来说,一张图片上往往会有多个目标物体
    # 设置参数MAX_NUM = 50, 即一张图片最多取50个真实框;如果真实
    # 框的数目少于50个,则将不足部分的gt_bbox, gt_class和gt_score的各项数值全设置为0
    MAX_NUM = 50
    gt_bbox2 = np.zeros((MAX_NUM, 4))
    gt_class2 = np.zeros((MAX_NUM,))
    for i in range(len(gt_bbox)):
        gt_bbox2[i, :] = gt_bbox[i, :]
        gt_class2[i] = gt_class[i]
        if i >= MAX_NUM:
            break
    return gt_bbox2, gt_class2

def get_img_data_from_file(record):  
    """
    record is a dict as following,
      record = {
            'im_file': img_file,
            'im_id': im_id,
            'h': im_h,
            'w': im_w,
            'is_crowd': is_crowd,
            'gt_class': gt_class,
            'gt_bbox': gt_bbox,
            'gt_poly': [],
            'difficult': difficult
            }
    """
    im_file = record['im_file']
    h = record['h']
    w = record['w']
    is_crowd = record['is_crowd']
    gt_class = record['gt_class']
    gt_bbox = record['gt_bbox']
    difficult = record['difficult']

    img = cv2.imread(im_file)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

    # check if h and w in record equals that read from img
    assert img.shape[0] == int(h), \
             "image height of {} inconsistent in record({}) and img file({})".format(
               im_file, h, img.shape[0])

    assert img.shape[1] == int(w), \
             "image width of {} inconsistent in record({}) and img file({})".format(
               im_file, w, img.shape[1])

    gt_boxes, gt_labels = get_bbox(gt_bbox, gt_class)

    # gt_bbox 用相对值
    gt_boxes[:, 0] = gt_boxes[:, 0] / float(w)
    gt_boxes[:, 1] = gt_boxes[:, 1] / float(h)
    gt_boxes[:, 2] = gt_boxes[:, 2] / float(w)
    gt_boxes[:, 3] = gt_boxes[:, 3] / float(h)
  
    return img, gt_boxes, gt_labels, (h, w)

# 将 list形式的batch数据 转化成多个array构成的tuple
def make_test_array(batch_data):
    img_name_array = np.array([item[0] for item in batch_data])
    img_data_array = np.array([item[1] for item in batch_data], dtype = 'float32')
    img_scale_array = np.array([item[2] for item in batch_data], dtype='int32')
    return img_name_array, img_data_array, img_scale_array


#图像增广
def image_augment(img, gtboxes, gtlabels, size, means=None):
    # 随机改变亮暗、对比度和颜色等
    img = random_distort(img)
    # 随机填充
    img, gtboxes = random_expand(img, gtboxes, fill=means)
    # 随机裁剪
    img, gtboxes, gtlabels, = random_crop(img, gtboxes, gtlabels)
    # 随机缩放
    img = random_interp(img, size)
    # 随机翻转
    img, gtboxes = random_flip(img, gtboxes)
    # 随机打乱真实框排列顺序
    gtboxes, gtlabels = shuffle_gtbox(gtboxes, gtlabels)

    return img.astype('float32'), gtboxes.astype('float32'), gtlabels.astype('int32')
#======================================================================================
def random_distort(img):
    # 随机改变亮度
    def random_brightness(img, lower=0.5, upper=1.5):
        e = np.random.uniform(lower, upper)
        return ImageEnhance.Brightness(img).enhance(e)
    # 随机改变对比度
    def random_contrast(img, lower=0.5, upper=1.5):
        e = np.random.uniform(lower, upper)
        return ImageEnhance.Contrast(img).enhance(e)
    # 随机改变颜色
    def random_color(img, lower=0.5, upper=1.5):
        e = np.random.uniform(lower, upper)
        return ImageEnhance.Color(img).enhance(e)

    ops = [random_brightness, random_contrast, random_color]
    np.random.shuffle(ops)

    img = Image.fromarray(img)
    img = ops[0](img)
    img = ops[1](img)
    img = ops[2](img)
    img = np.asarray(img)

    return img

# 随机填充
def random_expand(img,
                  gtboxes,
                  max_ratio=4.,
                  fill=None,
                  keep_ratio=True,
                  thresh=0.5):
    if random.random() > thresh:
        return img, gtboxes

    if max_ratio < 1.0:
        return img, gtboxes

    h, w, c = img.shape
    ratio_x = random.uniform(1, max_ratio)
    if keep_ratio:
        ratio_y = ratio_x
    else:
        ratio_y = random.uniform(1, max_ratio)
    oh = int(h * ratio_y)
    ow = int(w * ratio_x)
    off_x = random.randint(0, ow - w)
    off_y = random.randint(0, oh - h)

    out_img = np.zeros((oh, ow, c))
    if fill and len(fill) == c:
        for i in range(c):
            out_img[:, :, i] = fill[i] * 255.0

    out_img[off_y:off_y + h, off_x:off_x + w, :] = img
    gtboxes[:, 0] = ((gtboxes[:, 0] * w) + off_x) / float(ow)
    gtboxes[:, 1] = ((gtboxes[:, 1] * h) + off_y) / float(oh)
    gtboxes[:, 2] = gtboxes[:, 2] / ratio_x
    gtboxes[:, 3] = gtboxes[:, 3] / ratio_y

    return out_img.astype('uint8'), gtboxes

# 随机裁剪
def random_crop(img,
                boxes,
                labels,
                scales=[0.3, 1.0],
                max_ratio=2.0,
                constraints=None,
                max_trial=50):
    if len(boxes) == 0:
        return img, boxes

    if not constraints:
        constraints = [(0.1, 1.0), (0.3, 1.0), (0.5, 1.0), (0.7, 1.0),
                       (0.9, 1.0), (0.0, 1.0)]

    img = Image.fromarray(img)
    w, h = img.size
    crops = [(0, 0, w, h)]
    for min_iou, max_iou in constraints:
        for _ in range(max_trial):
            scale = random.uniform(scales[0], scales[1])
            aspect_ratio = random.uniform(max(1 / max_ratio, scale * scale), \
                                          min(max_ratio, 1 / scale / scale))
            crop_h = int(h * scale / np.sqrt(aspect_ratio))
            crop_w = int(w * scale * np.sqrt(aspect_ratio))
            crop_x = random.randrange(w - crop_w)
            crop_y = random.randrange(h - crop_h)
            crop_box = np.array([[(crop_x + crop_w / 2.0) / w,
                                  (crop_y + crop_h / 2.0) / h,
                                  crop_w / float(w), crop_h / float(h)]])

            iou = multi_box_iou_xywh(crop_box, boxes)
            if min_iou <= iou.min() and max_iou >= iou.max():
                crops.append((crop_x, crop_y, crop_w, crop_h))
                break

    while crops:
        crop = crops.pop(np.random.randint(0, len(crops)))
        crop_boxes, crop_labels, box_num = box_crop(boxes, labels, crop, (w, h))
        if box_num < 1:
            continue
        img = img.crop((crop[0], crop[1], crop[0] + crop[2],
                        crop[1] + crop[3])).resize(img.size, Image.LANCZOS)
        img = np.asarray(img)
        return img, crop_boxes, crop_labels
    img = np.asarray(img)
    return img, boxes, labels

# 随机缩放
def random_interp(img, size, interp=None):
    interp_method = [
        cv2.INTER_NEAREST,
        cv2.INTER_LINEAR,
        cv2.INTER_AREA,
        cv2.INTER_CUBIC,
        cv2.INTER_LANCZOS4,
    ]
    if not interp or interp not in interp_method:
        interp = interp_method[random.randint(0, len(interp_method) - 1)]
    h, w, _ = img.shape
    im_scale_x = size / float(w)
    im_scale_y = size / float(h)
    img = cv2.resize(
        img, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=interp)
    return img

# 随机翻转
def random_flip(img, gtboxes, thresh=0.5):
    if random.random() > thresh:
        img = img[:, ::-1, :]
        gtboxes[:, 0] = 1.0 - gtboxes[:, 0]
    return img, gtboxes

# 随机打乱真实框排列顺序
def shuffle_gtbox(gtbox, gtlabel):
    gt = np.concatenate(
        [gtbox, gtlabel[:, np.newaxis]], axis=1)
    idx = np.arange(gt.shape[0])
    np.random.shuffle(idx)
    gt = gt[idx, :]
    return gt[:, :4], gt[:, 4]

#======================================================================================

def get_img_data(record, size=640):
    img, gt_boxes, gt_labels, scales = get_img_data_from_file(record)
    img, gt_boxes, gt_labels = image_augment(img, gt_boxes, gt_labels, size)
    mean = [0.485, 0.456, 0.406]
    std = [0.229, 0.224, 0.225]
    mean = np.array(mean).reshape((1, 1, -1))
    std = np.array(std).reshape((1, 1, -1))
    img = (img / 255.0 - mean) / std
    img = img.astype('float32').transpose((2, 0, 1))
    return img, gt_boxes, gt_labels, scales


# 定义上采样模块
class Upsample(paddle.nn.Layer):
    def __init__(self, scale=2):
        super(Upsample,self).__init__()
        self.scale = scale

    def forward(self, inputs):
        # get dynamic upsample output shape
        shape_nchw = paddle.shape(inputs)
        shape_hw = paddle.slice(shape_nchw, axes=[0], starts=[2], ends=[4])
        shape_hw.stop_gradient = True
        in_shape = paddle.cast(shape_hw, dtype='int32')
        out_shape = in_shape * self.scale
        out_shape.stop_gradient = True

        # reisze by actual_shape
        out = paddle.nn.functional.interpolate(
            x=inputs, scale_factor=self.scale, mode="NEAREST")
        return out
#
#======================================================================================
#from paddle net from baidu.com code

class ConvBNLayer(paddle.nn.Layer):
    def __init__(self, ch_in, ch_out, 
                 kernel_size=3, stride=1, groups=1,
                 padding=0, act="leaky"):
        super(ConvBNLayer, self).__init__()
    
        self.conv = paddle.nn.Conv2D(
            in_channels=ch_in,
            out_channels=ch_out,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            groups=groups,
            weight_attr=paddle.ParamAttr(
                initializer=paddle.nn.initializer.Normal(0., 0.02)),
            bias_attr=False)
    
        self.batch_norm = paddle.nn.BatchNorm2D(
            num_features=ch_out,
            weight_attr=paddle.ParamAttr(
                initializer=paddle.nn.initializer.Normal(0., 0.02),
                regularizer=paddle.regularizer.L2Decay(0.)),
            bias_attr=paddle.ParamAttr(
                initializer=paddle.nn.initializer.Constant(0.0),
                regularizer=paddle.regularizer.L2Decay(0.)))
        self.act = act

        
    def forward(self, inputs):
        out = self.conv(inputs)
        out = self.batch_norm(out)
        if self.act == 'leaky':
            out = F.leaky_relu(x=out, negative_slope=0.1)
        return out
    
class DownSample(paddle.nn.Layer):
    # 下采样,图片尺寸减半,具体实现方式是使用stirde=2的卷积
    def __init__(self,
                 ch_in,
                 ch_out,
                 kernel_size=3,
                 stride=2,
                 padding=1):

        super(DownSample, self).__init__()

        self.conv_bn_layer = ConvBNLayer(
            ch_in=ch_in,
            ch_out=ch_out,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding)
        self.ch_out = ch_out
    def forward(self, inputs):
        out = self.conv_bn_layer(inputs)
        return out

class BasicBlock(paddle.nn.Layer):
    """
    基本残差块的定义,输入x经过两层卷积,然后接第二层卷积的输出和输入x相加
    """
    def __init__(self, ch_in, ch_out):
        super(BasicBlock, self).__init__()

        self.conv1 = ConvBNLayer(
            ch_in=ch_in,
            ch_out=ch_out,
            kernel_size=1,
            stride=1,
            padding=0
            )
        self.conv2 = ConvBNLayer(
            ch_in=ch_out,
            ch_out=ch_out*2,
            kernel_size=3,
            stride=1,
            padding=1
            )
    def forward(self, inputs):
        conv1 = self.conv1(inputs)
        conv2 = self.conv2(conv1)
        out = paddle.add(x=inputs, y=conv2)
        return out

     
class LayerWarp(paddle.nn.Layer):
    """
    添加多层残差块,组成Darknet53网络的一个层级
    """
    def __init__(self, ch_in, ch_out, count, is_test=True):
        super(LayerWarp,self).__init__()

        self.basicblock0 = BasicBlock(ch_in,
            ch_out)
        self.res_out_list = []
        for i in range(1, count):
            res_out = self.add_sublayer("basic_block_%d" % (i), # 使用add_sublayer添加子层
                BasicBlock(ch_out*2,
                    ch_out))
            self.res_out_list.append(res_out)

    def forward(self,inputs):
        y = self.basicblock0(inputs)
        for basic_block_i in self.res_out_list:
            y = basic_block_i(y)
        return y

class YoloDetectionBlock(paddle.nn.Layer):
    # define YOLOv3 detection head
    # 使用多层卷积和BN提取特征
    def __init__(self,ch_in,ch_out,is_test=True):
        super(YoloDetectionBlock, self).__init__()

        assert ch_out % 2 == 0, \
            "channel {} cannot be divided by 2".format(ch_out)

        self.conv0 = ConvBNLayer(
            ch_in=ch_in,
            ch_out=ch_out,
            kernel_size=1,
            stride=1,
            padding=0)
        self.conv1 = ConvBNLayer(
            ch_in=ch_out,
            ch_out=ch_out*2,
            kernel_size=3,
            stride=1,
            padding=1)
        self.conv2 = ConvBNLayer(
            ch_in=ch_out*2,
            ch_out=ch_out,
            kernel_size=1,
            stride=1,
            padding=0)
        self.conv3 = ConvBNLayer(
            ch_in=ch_out,
            ch_out=ch_out*2,
            kernel_size=3,
            stride=1,
            padding=1)
        self.route = ConvBNLayer(
            ch_in=ch_out*2,
            ch_out=ch_out,
            kernel_size=1,
            stride=1,
            padding=0)
        self.tip = ConvBNLayer(
            ch_in=ch_out,
            ch_out=ch_out*2,
            kernel_size=3,
            stride=1,
            padding=1)
    def forward(self, inputs):
        out = self.conv0(inputs)
        out = self.conv1(out)
        out = self.conv2(out)
        out = self.conv3(out)
        route = self.route(out)
        tip = self.tip(route)
        return route, tip

# 定义Sigmoid函数
def sigmoid(x):
    return 1./(1.0 + np.exp(-x))

# 将网络特征图输出的[tx, ty, th, tw]转化成预测框的坐标[x1, y1, x2, y2]
def get_yolo_box_xxyy(pred, anchors, num_classes, downsample):
    """
    pred是网络输出特征图转化成的numpy.ndarray
    anchors 是一个list。表示锚框的大小,
                例如 anchors = [116, 90, 156, 198, 373, 326],表示有三个锚框,
                第一个锚框大小[w, h]是[116, 90],第二个锚框大小是[156, 198],第三个锚框大小是[373, 326]
    """
    batchsize = pred.shape[0]
    num_rows = pred.shape[-2]
    num_cols = pred.shape[-1]

    input_h = num_rows * downsample
    input_w = num_cols * downsample

    num_anchors = len(anchors) // 2

    # pred的形状是[N, C, H, W],其中C = NUM_ANCHORS * (5 + NUM_CLASSES)
    # 对pred进行reshape
    pred = pred.reshape([-1, num_anchors, 5+num_classes, num_rows, num_cols])
    pred_location = pred[:, :, 0:4, :, :]
    pred_location = np.transpose(pred_location, (0,3,4,1,2))
    anchors_this = []
    for ind in range(num_anchors):
        anchors_this.append([anchors[ind*2], anchors[ind*2+1]])
    anchors_this = np.array(anchors_this).astype('float32')
    
    # 最终输出数据保存在pred_box中,其形状是[N, H, W, NUM_ANCHORS, 4],
    # 其中最后一个维度4代表位置的4个坐标
    pred_box = np.zeros(pred_location.shape)
    for n in range(batchsize):
        for i in range(num_rows):
            for j in range(num_cols):
                for k in range(num_anchors):
                    pred_box[n, i, j, k, 0] = j
                    pred_box[n, i, j, k, 1] = i
                    pred_box[n, i, j, k, 2] = anchors_this[k][0]
                    pred_box[n, i, j, k, 3] = anchors_this[k][1]

    # 这里使用相对坐标,pred_box的输出元素数值在0.~1.0之间
    pred_box[:, :, :, :, 0] = (sigmoid(pred_location[:, :, :, :, 0]) + pred_box[:, :, :, :, 0]) / num_cols
    pred_box[:, :, :, :, 1] = (sigmoid(pred_location[:, :, :, :, 1]) + pred_box[:, :, :, :, 1]) / num_rows
    pred_box[:, :, :, :, 2] = np.exp(pred_location[:, :, :, :, 2]) * pred_box[:, :, :, :, 2] / input_w
    pred_box[:, :, :, :, 3] = np.exp(pred_location[:, :, :, :, 3]) * pred_box[:, :, :, :, 3] / input_h

    # 将坐标从xywh转化成xyxy
    pred_box[:, :, :, :, 0] = pred_box[:, :, :, :, 0] - pred_box[:, :, :, :, 2] / 2.
    pred_box[:, :, :, :, 1] = pred_box[:, :, :, :, 1] - pred_box[:, :, :, :, 3] / 2.
    pred_box[:, :, :, :, 2] = pred_box[:, :, :, :, 0] + pred_box[:, :, :, :, 2]
    pred_box[:, :, :, :, 3] = pred_box[:, :, :, :, 1] + pred_box[:, :, :, :, 3]

    pred_box = np.clip(pred_box, 0., 1.0)

    return pred_box

# 挑选出跟真实框IoU大于阈值的预测框
def get_iou_above_thresh_inds(pred_box, gt_boxes, iou_threshold):
    batchsize = pred_box.shape[0]
    num_rows = pred_box.shape[1]
    num_cols = pred_box.shape[2]
    num_anchors = pred_box.shape[3]
    ret_inds = np.zeros([batchsize, num_rows, num_cols, num_anchors])
    for i in range(batchsize):
        pred_box_i = pred_box[i]
        gt_boxes_i = gt_boxes[i]
        for k in range(len(gt_boxes_i)): #gt in gt_boxes_i:
            gt = gt_boxes_i[k]
            gtx_min = gt[0] - gt[2] / 2.
            gty_min = gt[1] - gt[3] / 2.
            gtx_max = gt[0] + gt[2] / 2.
            gty_max = gt[1] + gt[3] / 2.
            if (gtx_max - gtx_min < 1e-3) or (gty_max - gty_min < 1e-3):
                continue
            x1 = np.maximum(pred_box_i[:, :, :, 0], gtx_min)
            y1 = np.maximum(pred_box_i[:, :, :, 1], gty_min)
            x2 = np.minimum(pred_box_i[:, :, :, 2], gtx_max)
            y2 = np.minimum(pred_box_i[:, :, :, 3], gty_max)
            intersection = np.maximum(x2 - x1, 0.) * np.maximum(y2 - y1, 0.)
            s1 = (gty_max - gty_min) * (gtx_max - gtx_min)
            s2 = (pred_box_i[:, :, :, 2] - pred_box_i[:, :, :, 0]) * (pred_box_i[:, :, :, 3] - pred_box_i[:, :, :, 1])
            union = s2 + s1 - intersection
            iou = intersection / union
            above_inds = np.where(iou > iou_threshold)
            ret_inds[i][above_inds] = 1
    ret_inds = np.transpose(ret_inds, (0,3,1,2))
    return ret_inds.astype('bool')

def label_objectness_ignore(label_objectness, iou_above_thresh_indices):
    # 注意:这里不能简单的使用 label_objectness[iou_above_thresh_indices] = -1,
    #         这样可能会造成label_objectness为1的点被设置为-1了
    #         只有将那些被标注为0,且与真实框IoU超过阈值的预测框才被标注为-1
    negative_indices = (label_objectness < 0.5)
    ignore_indices = negative_indices * iou_above_thresh_indices
    label_objectness[ignore_indices] = -1
    return label_objectness

# DarkNet 每组残差块的个数,来自DarkNet的网络结构图
DarkNet_cfg = {53: ([1, 2, 8, 8, 4])}

class DarkNet53_conv_body(paddle.nn.Layer):
    def __init__(self):
        super(DarkNet53_conv_body, self).__init__()
        self.stages = DarkNet_cfg[53]
        self.stages = self.stages[0:5]

        # 第一层卷积
        self.conv0 = ConvBNLayer(
            ch_in=3,
            ch_out=32,
            kernel_size=3,
            stride=1,
            padding=1)

        # 下采样,使用stride=2的卷积来实现
        self.downsample0 = DownSample(
            ch_in=32,
            ch_out=32 * 2)

        # 添加各个层级的实现
        self.darknet53_conv_block_list = []
        self.downsample_list = []
        for i, stage in enumerate(self.stages):
            conv_block = self.add_sublayer(
                "stage_%d" % (i),
                LayerWarp(32*(2**(i+1)),
                32*(2**i),
                stage))
            self.darknet53_conv_block_list.append(conv_block)
        # 两个层级之间使用DownSample将尺寸减半
        for i in range(len(self.stages) - 1):
            downsample = self.add_sublayer(
                "stage_%d_downsample" % i,
                DownSample(ch_in=32*(2**(i+1)),
                    ch_out=32*(2**(i+2))))
            self.downsample_list.append(downsample)

    def forward(self,inputs):
        out = self.conv0(inputs)
        #print("conv1:",out.numpy())
        out = self.downsample0(out)
        #print("dy:",out.numpy())
        blocks = []
        for i, conv_block_i in enumerate(self.darknet53_conv_block_list): #依次将各个层级作用在输入上面
            out = conv_block_i(out)
            blocks.append(out)
            if i < len(self.stages) - 1:
                out = self.downsample_list[i](out)
        return blocks[-1:-4:-1] # 将C0, C1, C2作为返回值

#
def multi_box_iou_xywh(box1, box2):
    """
    In this case, box1 or box2 can contain multi boxes.
    Only two cases can be processed in this method:
       1, box1 and box2 have the same shape, box1.shape == box2.shape
       2, either box1 or box2 contains only one box, len(box1) == 1 or len(box2) == 1
    If the shape of box1 and box2 does not match, and both of them contain multi boxes, it will be wrong.
    """
    assert box1.shape[-1] == 4, "Box1 shape[-1] should be 4."
    assert box2.shape[-1] == 4, "Box2 shape[-1] should be 4."


    b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2
    b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2
    b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2
    b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2

    inter_x1 = np.maximum(b1_x1, b2_x1)
    inter_x2 = np.minimum(b1_x2, b2_x2)
    inter_y1 = np.maximum(b1_y1, b2_y1)
    inter_y2 = np.minimum(b1_y2, b2_y2)
    inter_w = inter_x2 - inter_x1
    inter_h = inter_y2 - inter_y1
    inter_w = np.clip(inter_w, a_min=0., a_max=None)
    inter_h = np.clip(inter_h, a_min=0., a_max=None)

    inter_area = inter_w * inter_h
    b1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1)
    b2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1)

    return inter_area / (b1_area + b2_area - inter_area)

def box_crop(boxes, labels, crop, img_shape):
    x, y, w, h = map(float, crop)
    im_w, im_h = map(float, img_shape)

    boxes = boxes.copy()
    boxes[:, 0], boxes[:, 2] = (boxes[:, 0] - boxes[:, 2] / 2) * im_w, (
        boxes[:, 0] + boxes[:, 2] / 2) * im_w
    boxes[:, 1], boxes[:, 3] = (boxes[:, 1] - boxes[:, 3] / 2) * im_h, (
        boxes[:, 1] + boxes[:, 3] / 2) * im_h

    crop_box = np.array([x, y, x + w, y + h])
    centers = (boxes[:, :2] + boxes[:, 2:]) / 2.0
    mask = np.logical_and(crop_box[:2] <= centers, centers <= crop_box[2:]).all(
        axis=1)

    boxes[:, :2] = np.maximum(boxes[:, :2], crop_box[:2])
    boxes[:, 2:] = np.minimum(boxes[:, 2:], crop_box[2:])
    boxes[:, :2] -= crop_box[:2]
    boxes[:, 2:] -= crop_box[:2]

    mask = np.logical_and(mask, (boxes[:, :2] < boxes[:, 2:]).all(axis=1))
    boxes = boxes * np.expand_dims(mask.astype('float32'), axis=1)
    labels = labels * mask.astype('float32')
    boxes[:, 0], boxes[:, 2] = (boxes[:, 0] + boxes[:, 2]) / 2 / w, (
        boxes[:, 2] - boxes[:, 0]) / w
    boxes[:, 1], boxes[:, 3] = (boxes[:, 1] + boxes[:, 3]) / 2 / h, (
        boxes[:, 3] - boxes[:, 1]) / h

    return boxes, labels, mask.sum()

#

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/70996.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

拓扑布局和建立小型网络

练习 2.6.1&#xff1a;拓扑布局和建立小型网络 地址表 本实验不包括地址表。 拓扑图 学习目标 正确识别网络中使用的电缆物理连接点对点交换网络验证每个网络的基本连通性 简介&#xff1a; 许多网络问题都可以在网络的物理层解决。因此&#xff0c;必须清楚了解网络连接…

光致发光二极管光源——荧光效率检测系统

发光二极管&#xff08;LED&#xff09;光源已经逐步地取代传统光源&#xff0c;并在生产和生活中得以广泛应用。荧光粉在LED照明设备中起到了至关重要的作用&#xff0c;其功能为将转换芯片所产生的紫外或者蓝光&#xff0c;发射出目标颜色的光。近年来&#xff0c;人们为了提…

分布式 - 消息队列Kafka:Kafka消费者分区再均衡(Rebalance)

文章目录 01. Kafka 消费者分区再均衡是什么&#xff1f;02. Kafka 消费者分区再均衡的触发条件&#xff1f;03. Kafka 消费者分区再均衡的过程&#xff1f;04. Kafka 如何判定消费者已经死亡&#xff1f;05. Kafka 如何避免消费者的分区再均衡?06. Kafka 消费者分区再均衡有什…

解决MySQL与Redis缓存一致性的问题

背景 考试系统中&#xff0c;教师会在后台发布一场考试&#xff0c;考试会存储在MySQL和Redis里面&#xff0c;考试有时候是会出错的&#xff0c;我们需要后台修改&#xff0c;如果多个教师在后台并发修改&#xff08;概率不大&#xff09;&#xff0c;可能会出现数据库缓存不…

企业中商业智能BI,常见的工具和技术

商业智能&#xff08;Business Intelligence&#xff0c;简称BI&#xff09;数据可视化是通过使用图表、图形和其他可视化工具来呈现和解释商业数据的过程。它旨在帮助组织更好地理解和分析他们的数据&#xff0c;从而做出更明智的商业决策。 常见的商业智能数据可视化工具和技…

【二分+贪心】CF1622 C

Problem - 1622C - Codeforces 题意&#xff1a; 思路&#xff1a; 首先&#xff0c;观察样例可知&#xff0c;肯定是把原本的最小值减到某个值&#xff0c;然后再复制几次 复制的时候肯定是从大到小复制 那把最小值减到哪个值是不确定的&#xff0c;考虑枚举这个值&#x…

预测知识 | 神经网络、机器学习、深度学习

预测知识 | 预测技术流程及模型评价 目录 预测知识 | 预测技术流程及模型评价神经网络机器学习深度学习参考资料 神经网络 神经网络&#xff08;neural network&#xff09;是机器学习的一个重要分支&#xff0c;也是深度学习的核心算法。神经网络的名字和结构&#xff0c;源自…

实例036 使窗体标题栏文字右对齐

实例说明 窗口标题栏中的文字是窗口的重要说明&#xff0c;该文字可以标示窗口的功能、状态或名称等信息&#xff0c;一般该文字是居左显示的&#xff0c;在本例中设计一个标题栏文字右对齐的窗口。本实例运行结果如图1.36所示。 技术要点 在C# 2.0中实现这一功能非常容易&am…

Qt应用开发(基础篇)——拆分器窗口 QSplitter QSplitterHandle

一、前言 QSplitter继承于QFrame&#xff0c;QFrame继承于QWidget&#xff0c;是Qt的一个部件容器工具类。 框架类QFrame介绍 QSplitter拆分器&#xff0c;用户通过拖动子部件之间的边界来控制子部件的大小&#xff0c;在应用开发中数据分模块展示、图片展示等场景下使用。 二、…

第三节:在WORD为应用主窗口下关闭EXCEL的操作(1)

【分享成果&#xff0c;随喜正能量】夏日里的遗憾&#xff0c;一定都会被秋风温柔化解。吃素不难&#xff0c;难于不肯捨贪口腹之心。若不贪口腹&#xff0c;有何吃素之不便乎。虽吃华素&#xff0c;不吃素日&#xff0c;亦须少吃。以一切物类&#xff0c;皆是贪生怕死&#xf…

最强自动化测试框架Playwright(11)- 录制视频

视频 使用playwright&#xff0c;您可以录制测试视频。 录制视频 视频在测试结束时在浏览器上下文关闭时保存。如果手动创建浏览器上下文&#xff0c;请确保等待 browser_context.close&#xff08;&#xff09;。 context browser.new_context(record_video_dir"vid…

机器学习基础08-回归算法矩阵分析(基于波士顿房价(Boston House Price)数据集)

回归算法通常涉及到使用矩阵来表示数据和模型参数。线性回归是最常见的回归算法之一&#xff0c;它可以用矩阵形式来表示。 考虑一个简单的线性回归模型&#xff1a; y m x b y mx b ymxb&#xff0c;其中 y y y 是因变量&#xff0c; x x x 是自变量&#xff0c; m m m 是…

基于 JMeter API 开发性能测试平台

目录 背景&#xff1a; 常用的 JMeter 类和功能的解释&#xff1a; JMeter 编写性能测试脚本的大致流程示意图&#xff1a; 源码实现方式&#xff1a; (1) 环境初始化 (2) 环境初始化 (3) 创建测试计划 (4) 创建 ThreadGroup (5) 创建循环控制器 (6) 创建 Sampler (…

Linux安装配置nginx+php搭建以及在docker中配置

Linux安装配置nginxphp搭建以及在docker中配置 文章目录 Linux安装配置nginxphp搭建以及在docker中配置1.nginx源码包编译环境和安装相应的依赖1.1 安装编译环境1.2 安装pcre库、zlib库和openssl库 2.安装nginx2.1 在[nginx官网](https://nginx.org/en/download.html)上获取源码…

ffmpeg+nginx实现rtsp协议摄像头web端播放

ffmpegnginx实现rtsp协议摄像头web端播放 环境准备准备nginx环境添加rtmp模块添加hls转发 使用ffmpeg&#xff0c;将摄像头rtsp转为rtmp并推送到nginxVLC播放验证 环境准备 nginx&#xff08;需要安装rtmp模块&#xff09;ffmpeg 6.0vlc播放器&#xff08;本地播放验证&#x…

如何让ES低成本、高性能?滴滴落地ZSTD压缩算法的实践分享

前文分别介绍了滴滴自研的ES强一致性多活是如何实现的、以及如何提升ES的性能潜力。由于滴滴ES日志场景每天写入量在5PB-10PB量级&#xff0c;写入压力和业务成本压力大&#xff0c;为了提升ES的写入性能&#xff0c;我们让ES支持ZSTD压缩算法&#xff0c;本篇文章详细展开滴滴…

青大数据结构【2014】

一、单选 二、简答 为了解决顺序队列的假溢出问题&#xff0c;提出了循环队列&#xff0c;即把存储队列的表从逻辑上看成一个环 判别队列空和满有三种方法&#xff1a; 1&#xff09;采用计数器判别&#xff0c;空时&#xff0c;计数器为0&#xff1b;满时&#xff0c;计数器…

智谷星图赵俊:让人才和区块链产业“双向奔赴”丨对话MVP

区块链产业需要什么样的人才&#xff1f;赵俊很有发言权。 赵俊是北京智谷星图科技有限公司的技术总监&#xff0c;也是FISCO BCOS官方认证讲师。他2017年接触区块链&#xff0c;随后选择人才培育领域深耕。“为区块链行业引进更多人才这件事很有价值&#xff0c;跟我的职业理…

shell脚本开发

shell脚本语言属于弱类型的语言&#xff0c;无需声明变量类型&#xff0c;直接定义使用 shell语言定义的变量&#xff0c;数据类型默认都是字符串类型 调用历史记录命令&#xff1a;&#xff01; 历史记录id

【C语言】分支语句(选择结构)详解

✨个人主页&#xff1a; Anmia.&#x1f389;所属专栏&#xff1a; C Language &#x1f383;操作环境&#xff1a; Visual Studio 2019 版本 目录 什么是分支语句&#xff1f; if语句 if if - else单分支 if - else if - else ...多分支 if - if嵌套 switch语句 基本语…