Matlab|基于主从博弈的智能小区代理商定价策略及电动汽车充电管理

目录

一、主要内容

二、部分代码

三、程序结果

四、下载链接


一、主要内容

主要做的是一个电动汽车充电管理和智能小区代理商动态定价的问题,将代理商和车主各自追求利益最大化建模为主从博弈,上层以代理商的充电电价作为优化变量,下层以电动汽车的充电策略作为优化变量,通过优化得出最优电价策略以及动态充电策略。

研究代理商与电动汽车车主利益的优化问题,所提研究方法与建模思路较已有成果有以下不同:首先,代理商无需直接干预电动汽车的充放电行为,只需制定各时段的电价引导其用户的消费行为。其次,用户不再完全是价格的“接受者”,他们可以自主选择充电时段。更重要的是,代理商与用户的竞争关系通过主从博弈(stackelberg game)描述,在该博弈的均衡处各方的利益均可达到最大。

二、部分代码

%双层博弈,KKT条件
%魏韡, 陈玥, 刘锋, et al. 基于主从博弈的智能小区代理商定价策略及电动汽车充电管理[J]. 电网技术, 2015(4).
clear
clc
price_day_ahead=[0.35;0.33;0.3;0.33;0.36;0.4;0.44;0.46;0.52;0.58;0.66;0.75;0.81;0.76;0.8;0.83;0.81;0.75;0.64;0.55;0.53;0.47;0.40;0.37];
price_b=1.2*price_day_ahead;
price_s=1.2*price_day_ahead;
lb=0.8*price_day_ahead;
ub=1.2*price_day_ahead;
T_1=[1;1;1;1;1;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;1;1];
T_2=[1;1;1;1;1;1;1;1;0;0;0;0;1;1;1;0;0;0;0;1;1;1;1;1];
T_3=[0;0;0;0;0;0;0;1;1;1;1;1;1;1;1;1;1;1;1;1;0;0;0;0];
index1=find(T_1==0);index2=find(T_2==0);index3=find(T_3==0);
Ce=sdpvar(24,1);%电价
z=binvar(24,1);%购售电状态
u=binvar(24,1);%储能状态
Pb=sdpvar(24,1);%日前购电
Pb_day=sdpvar(24,1);%实时购电
Ps_day=sdpvar(24,1);%实时售电
Pdis=sdpvar(24,1);%储能放电
Pch=sdpvar(24,1);%储能充电
Pc1=sdpvar(24,1);%一类车充电功率
Pc2=sdpvar(24,1);%二类车充电功率
Pc3=sdpvar(24,1);%三类车充电功率
S=sdpvar(24,1);%储荷容量
for t=2:24
    S(t)=S(t-1)+0.9*Pch(t)-Pdis(t)/0.9;
end
C=[lb<=Ce<=ub,mean(Ce)==0.5,Pb>=0,Ps_day<=Pdis,Pb_day>=0,Pb_day<=1000*z,Ps_day>=0,Ps_day<=1000*(1-z),Pch>=0,Pch<=1000*u,Pdis>=0,Pdis<=1000*(1-u)];%边界约束
C=[C,Pc1+Pc2+Pc3+Pch-Pdis==Pb+Pb_day-Ps_day];%能量平衡
C=[C,sum(0.9*Pch-Pdis/0.9)==0,S(24)==2500,S>=0,S<=5000];%SOC约束
L_u=sdpvar(1,3);%电量需求等式约束的拉格朗日函数
L_lb=sdpvar(24,3);%充电功率下限约束的拉格朗日函数
L_ub=sdpvar(24,3);%充电功率上限约束的拉格朗日函数
L_T=sdpvar(24,3);%充电可用时间约束的拉格朗日函数
f=50*L_u(1)*(0.9*24-9.6)+20*L_u(2)*(0.9*24-9.6)+10*L_u(3)*(0.9*24-9.6)+sum(sum(L_ub).*[50*3,20*3,10*3])+sum(price_s.*Ps_day-price_day_ahead.*Pb-price_b.*Pb_day);%目标函数
C=[C,Ce-L_u(1)*ones(24,1)-L_lb(:,1)-L_ub(:,1)-L_T(:,1)==0,Ce-L_u(2)*ones(24,1)-L_lb(:,2)-L_ub(:,2)-L_T(:,2)==0,Ce-L_u(3)*ones(24,1)-L_lb(:,3)-L_ub(:,3)-L_T(:,3)==0];%KKT条件
C=[C,sum(Pc1)==50*(0.9*24-9.6),sum(Pc2)==20*(0.9*24-9.6),sum(Pc3)==10*(0.9*24-9.6)];%电量需求约束
for t=1:24
    if T_1(t)==0
        C=[C,Pc1(t)==0];
    else
        C=[C,L_T(t,1)==0];
    end
    if T_2(t)==0
        C=[C,Pc2(t)==0];
    else
        C=[C,L_T(t,2)==0];
    end
    if T_3(t)==0
        C=[C,Pc3(t)==0];
    else
        C=[C,L_T(t,3)==0];
    end
end
b_lb=binvar(24,3);%充电功率下限约束的松弛变量
b_ub=binvar(24,3);%充电功率上限约束的松弛变量
M=1000;
for t=1:24
    if T_1(t)==0
        C=[C,L_ub(t,1)==0,b_ub(t,1)==1,b_lb(t,1)==1];
    else
        C=[C,L_lb(t,1)>=0,L_lb(t,1)<=M*b_lb(t,1),Pc1(t)>=0,Pc1(t)<=M*(1-b_lb(t,1)),Pc1(t)<=50*3,50*3-Pc1(t)<=M*b_ub(t,1),L_ub(t,1)<=0,L_ub(t,1)>=M*(b_ub(t,1)-1)];
    end
    if T_2(t)==0
        C=[C,L_ub(t,2)==0,b_ub(t,2)==1,b_lb(t,2)==1];
    else
        C=[C,L_lb(t,2)>=0,L_lb(t,2)<=M*b_lb(t,2),Pc2(t)>=0,Pc2(t)<=M*(1-b_lb(t,2)),Pc2(t)<=20*3,20*3-Pc2(t)<=M*b_ub(t,2),L_ub(t,2)<=0,L_ub(t,2)>=M*(b_ub(t,2)-1)];
    end
    if T_3(t)==0
        C=[C,L_ub(t,3)==0,b_ub(t,3)==1,b_lb(t,3)==1];
    else
        C=[C,L_lb(t,3)>=0,L_lb(t,3)<=M*b_lb(t,3),Pc3(t)>=0,Pc3(t)<=M*(1-b_lb(t,3)),Pc3(t)<=10*3,10*3-Pc3(t)<=M*b_ub(t,3),L_ub(t,3)<=0,L_ub(t,3)>=M*(b_ub(t,3)-1)];
    end
end
ops=sdpsettings('solver','cplex');
solvesdp(C,-f,ops);
Pc=[double(Pc1),double(Pc2),double(Pc3)];
Pb=double(Pb);
Ps_day=double(Ps_day);
Pb_day=double(Pb_day);
S=double(S);
Pch=double(Pch);
Pdis=double(Pdis);
Cost_total=double(f)
Price_Charge=double(Ce);
​
Ce=sdpvar(24,1);%电价
z=binvar(24,1);%购售电状态
u=binvar(24,1);%储能状态
Pb=sdpvar(24,1);%日前购电
Pb_day=sdpvar(24,1);%实时购电
Ps_day=sdpvar(24,1);%实时售电
Pdis=sdpvar(24,1);%储能放电
Pch=sdpvar(24,1);%储能充电
Pc1=sdpvar(24,1);%一类车充电功率
Pc2=sdpvar(24,1);%二类车充电功率
Pc3=sdpvar(24,1);%三类车充电功率
S=sdpvar(24,1);%储荷容量
for t=2:24
    S(t)=S(t-1)+0.9*Pch(t)-Pdis(t)/0.9;
end
%内层
CI=[sum(Pc1)==50*(0.9*24-9.6),sum(Pc2)==20*(0.9*24-9.6),sum(Pc3)==10*(0.9*24-9.6),Pc1>=0,Pc2>=0,Pc3>=0,Pc1<=50*3,Pc2<=20*3,Pc3<=10*3,Pc1(index1)==0,Pc2(index2)==0,Pc3(index3)==0];%电量需求约束
OI=sum(Ce.*(Pc1+Pc2+Pc3));
ops=sdpsettings('solver','gurobi','kkt.dualbounds',0);
[K,details] = kkt(CI,OI,Ce,ops);%建立KKT系统,Ce为参量
%外层
CO=[lb<=Ce<=ub,mean(Ce)==0.5,Pb>=0,Ps_day<=Pdis,Pb_day>=0,Pb_day<=1000*z,Ps_day>=0,Ps_day<=1000*(1-z),Pch>=0,Pch<=1000*u,Pdis>=0,Pdis<=1000*(1-u)];%边界约束
CO=[CO,Pc1+Pc2+Pc3+Pch-Pdis==Pb+Pb_day-Ps_day];%能量平衡
CO=[CO,sum(0.9*Pch-Pdis/0.9)==0,S(24)==2500,S>=0,S<=5000];%SOC约束
OO=-(details.b'*details.dual+details.f'*details.dualeq)+sum(price_s.*Ps_day-price_day_ahead.*Pb-price_b.*Pb_day);%目标函数
optimize([K,CI,CO,boundingbox([CI,CO]),details.dual<=1],-OO)
​
Ce=value(Ce);%电价
Pb=value(Pb);%日前购电
Pb_day=value(Pb_day);%实时购电
Ps_day=value(Ps_day);%实时购电
Pdis=value(Pdis);%储能放电
Pch=value( Pch);%储能充电
Pb_day=value(Pb_day);%实时购电
Pb_day=value(Pb_day);%实时购电
Pc1=value(Pc1);%一类车充电功率
Pc2=value(Pc2);%二类车充电功率
Pc3=value(Pc3);%三类车充电功率
S=value(S);%储荷容量
​
figure(1)
plot(Pc1,'-*','linewidth',1.5)
grid
hold on
plot(Pc2,'-*','linewidth',1.5)
hold on
plot(Pc3,'-*','linewidth',1.5)
title('三类电动汽车充电功率')
legend('类型1','类型2','类型3')
xlabel('时间')
ylabel('功率')
​
figure(2)
bar(Pdis,0.5,'linewidth',0.01)
grid
hold on
bar(Pch,0.5,'linewidth',0.01)
hold on
plot(S,'-*','linewidth',1.5)
axis([0.5 24.5 0 5000]);
title('储能充电功率')
legend('充电功率','放电功率','蓄电量')
xlabel('时间')
ylabel('功率')
​
figure(3)
yyaxis left;
bar(Pb_day,0.5,'linewidth',0.01)
hold on
bar(Ps_day,0.5,'linewidth',0.01)
axis([0.5 24.5 0 1200])
xlabel('时间')
ylabel('功率')
yyaxis right;
plot(Ce,'-*','linewidth',1.5)
% legend('电价结果')
xlabel('时间')
ylabel('电价')
legend('日前购电','日前售电','电价优化');
​
figure(4)
plot(Ce,'-*','linewidth',1.5)
grid
hold on
plot(price_b,'-*','linewidth',1.5)
hold on
plot(price_s,'-*','linewidth',1.5)
title('电价优化结果')
legend('优化电价','购电电价','售电电价')
xlabel('时间')
ylabel('电价')

三、程序结果

四、下载链接

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/705894.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

linux配置用户

一&#xff0c;安装sudo与确保在管理员用户下 apt update apt install sudo -y 切换用户&#xff1a;密码不会显示&#xff0c;一个个输入然后回车。//图中是zfxt-->Stable用户切换 su root //root为用户名 以其他用户执行命令&#xff1a; su root ping baidu.com //su…

安装好IDEA后,就能够直接开始跑代码了吗?

我实习的第一天&#xff0c;睿哥叫我安装了IDEA&#xff0c;然后我就照做了。 之后&#xff0c;我把gitlab的代码拉下来后&#xff0c;发现好像没有编译运行的按钮&#xff0c;所以我就跑去问睿哥。睿哥当时看了看后&#xff0c;发现原来我没有安装JDK&#xff0c;他就叫我安装…

助力618!你想便宜寄快递退换货吗?

家人们&#xff0c;姐妹们&#xff0c;马上就要到618了&#xff0c;每年一到这种重要的节日&#xff0c;我们都会买买买&#xff0c;但是我们有时候买了会发现这个商品不太满意&#xff0c;我们会选择退换货&#xff0c;或者给商家邮寄回去&#xff0c;但是这个运费可真的太贵了…

ios描述文件.mobileprovision 如何查看包含的设备 udid|IPA查看是否包含设备 UDID|轻松签查看证书是否包含自己设备 UDID

前言 之前蒲公英支持上传证书查看证书有效期和包含设备 【干货】IOS苹果P12证书有效性检测 及查看证书是否包含自己的设备 【干货】IOS苹果P12证书有效性检测 及查看证书是否包含自己的设备 - 路灯IT技术博客 - 后厂村路灯 如今蒲公英下架了该功能&#xff0c;已经没有证书检…

C++--DAY7

vector容器 #include <iostream> #include <vector>using namespace std; void printVector(vector<int> &v) {//定义一个迭代器 指针vector<int>::iterator iter;//v.end&#xff08;&#xff09;是最后一个元素的下一个元素地址for(iterv.begin…

VRRP基础配置(华为)

#交换设备 VRRP基础配置 VRRP (Virtual Router Redundancy Protocol) 全称是虚拟路由规元余协议&#xff0c;它是一种容错协议。该协议通过把几台路由设备联合组成一台虚拟的路由设备&#xff0c;该虚拟路由器在本地局域网拥有唯一的一个虚拟 ID 和虚拟 IP 地址。实际上&…

【记录】ChatGLM3-6B大模型部署、微调(一):部署

ChatGLM3介绍 源码连接&#xff1a; ChatGLM3 是智谱AI和清华大学 KEG 实验室联合发布的对话预训练模型。ChatGLM3-6B 是 ChatGLM3 系列中的开源模型&#xff0c;在保留了前两代模型对话流畅、部署门槛低等众多优秀特性的基础上&#xff0c;ChatGLM3-6B 引入了如下特性&#xf…

(几何:六边形面积)编写程序,提示用户输入六边形的边长,然后显示它的面积。

(几何:六边形面积)编写程序&#xff0c;提示用户输入六边形的边长&#xff0c;然后显示它的面积。计 算六边形面积的公式是: 这里的s就是边长。下面是一个运行示例 package myjava; import java.math.*; import java.util.Scanner; public class cy {public static void main(S…

Spring系统学习 -Spring IOC 的XML管理Bean之P命名空间、实现引入MySQL外部链接属性文件

P命名空间 在Spring框架中&#xff0c;P命名空间是一种用于简化XML配置文件中属性注入的方式。通过引入P命名空间&#xff0c;可以使用更简洁的语法来设置bean的属性值&#xff0c;而无需显式地使用<property>子元素。这使得XML配置文件更加简洁和易于阅读。 要在Sprin…

集合查询-并(UNION)集运算、交(INTERSECT)集运算、差(EXCEPT)集运算

一、概述 集合查询是对两个SELECT语句的查询结果进行再进行处理的查询 二、条件 1、两个SELECT语句的查询结果必须是属性列数目相同 2、两个SELECT语句的查询结果必须是对应位置上的属性列必须是相同的数据类型 三、并(UNION)运算 1、语法格式&#xff1a; SELECT 语句1…

闪灵CMS电子商城系统源码v5.0(自带微信小程序)

源码介绍 闪灵CMS电子商城系统源码&#xff0c;双语带手机版&#xff0c;PHPMYSQL进行开发&#xff0c;网站安装简单、快捷。 闪灵CMS系统更新日志 1.修复&#xff1a;修复了开启强制https后&#xff0c;说明文档重定向过多的问题 2.修复&#xff1a;修复了商品名称过长时无…

Vue2+Element-ui实现el-table表格自适应高度

效果图 新建指令 Vue.directive(height, {inserted(el, _binding, vnode) {const paginationRef vnode.context.$refs.paginationRefconst calculateHeight () > {const windowHeight window.innerHeightconst topOffset el.getBoundingClientRect().topconst otherEle…

智能座舱软件性能与可靠性的评估和改进

随着智能汽车的不断发展&#xff0c;智能座舱在性能与可靠性上暴露出体验不佳、投诉渐多的问题&#xff0c;本文从工程化的角度简述了如何构建智能座舱软件的评估框架&#xff0c;以及如何持续改进其性能和可靠性。 1. 智能座舱软件性能和可靠性表现不佳 据毕马威发布的《2023…

ComfyUI 完全入门:Refiner精炼器

在 SDXL基础模型1.0版本发布时&#xff0c;Stability AI 公司同时发布了一个名为SDXL Refiner的模型。这个Refiner模型是专门设计用来对基础模型生成的图像进行进一步优化和细化的&#xff0c;所以大家也经常称之为精炼器或者精修器。 Refiner模型的主要目的是提升图像的质量&…

写了6年SQL,推荐快速上手MySQL 的SQL语句

写了6、7年SQL&#xff0c;有写复杂&#xff0c;有写简单&#xff0c;但总体而言&#xff0c;基础是统一的&#xff0c;。就像编程之需要会加减乘除&#xff0c;用MySQL懂这些SQL就足够了。 目录 1. SELECT 查询2. WHERE 子句3. ORDER BY 子句4. GROUP BY 子句5. HAVING 子句6…

免费代理为什么不适合您的业务需求?

在数字时代&#xff0c;网络已经成为人们日常生活和商业活动中不可或缺的一部分。为了实现更广阔的业务拓展和更畅通的网络体验&#xff0c;许多人开始考虑使用代理服务器。然而&#xff0c;虽然免费代理可能听起来像是个经济实惠的选择&#xff0c;但事实上&#xff0c;它可能…

微服务开发与实战Day06 - MQ基础篇

一、MQ 高性能的异步通讯组件 课程背景 同步通讯&#xff1a;并发能力弱 异步通讯&#xff1a;并发能力强 1. 初始MQ 1.1 同步调用 以黑马商城的余额支付为例&#xff1a; &#xff08;1&#xff09;同步调用的优势是什么&#xff1f; 时效性强&#xff0c;等待到结果后才…

基于SSD的安全帽检测

目录 1. 作者介绍2. SSD算法介绍2.1 SSD算法网络结构2.2 SSD算法训练过程2.3 SSD算法优缺点 3. 基于SSD的安全帽检测实验3.1 VOC 2007安全帽数据集3.2 SSD网络架构3.3 训练和验证所需的2007_train.txt和2007_val.txt文件生成3.4 模型训练3.5 GUI界面3.6 结果展示3.7 文件下载 4…

【Unity+AI01】在Unity中调用DeepSeek大模型!实现AI对话功能!

要在Unity中调用DeepSeek的API并实现用户输入文本后返回对话的功能&#xff0c;你需要遵循以下步骤&#xff1a; 获取API密钥&#xff1a; 首先&#xff0c;你需要从DeepSeek获取API密钥。这通常涉及到注册账户&#xff0c;并可能需要订阅相应的服务。 集成HTTP请求库&#xf…

基于python多光谱遥感数据处理、图像分类、定量评估及机器学习

原文链接&#xff1a;基于python多光谱遥感数据处理、图像分类、定量评估及机器学习 普通数码相机记录了红、绿、蓝三种波长的光&#xff0c;多光谱成像技术除了记录这三种波长光之外&#xff0c;还可以记录其他波长&#xff08;例如&#xff1a;近红外、热红外等&#xff09;光…