对抗攻击论文阅读—AAAI2022—CMUA-Watermark

文章目录

CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes

论文地址:https://arxiv.org/abs/2105.10872
github地址:https://github.com/VDIGPKU/CMUA-Watermark

背景

对抗 StarGAN、AGGAN、AttGAN和 HiSD等一系列人脸变换网络。

  • StarGAN 和 AGGAN 均在 CelebA 数据集上针对五个属性进行训练:黑发、金发、棕色头发、性别和年龄。
  • AttGAN 在 CelebA 数据集上进行了多达 14 个属性的训练,与上述两个网络相比更加复杂。
  • 面部修改网络 HiSD,该网络也是在 CelebA 数据集上进行训练的,并且可以为目标人添加一副眼镜。

1、什么是对抗攻击

一般来说,图片放入deepfake生成模型中,获得相应的视觉效果改变(换脸、属性编辑等)。
对抗攻击,训练一个对抗扰动加入图片中,在不影响原图的视觉效果的同时,图片+对抗扰动 放入deepfake生成模型中,破坏生成效果。

1.1 主动防御与被动防御

前面的deepfake检测论文讲解:https://blog.csdn.net/JustWantToLearn/article/details/138758033 是被动防御,图片被恶意更改后判断是否是AI合成的。
这一篇是主动防御,图片中加入扰动,防止被AI合成。如下图解释所示:

2、整体思路

在这里插入图片描述

以前论文的不足:先前对抗性水印具有较低的图像级别和模型级别可转移性,只能保护一个特定deepfake模型的一张面部图像
本文:生成跨模型通用对抗水印(CMUA-Watermark),保护大量面部图像免受多个深度伪造模型的攻击。
方法:提出了一个跨模型通用攻击管道,迭代地攻击多个deepfake模型。

  • 首先引入了生成跨模型对抗水印(CMUAWatermark)的新思想,以保护人类面部图像免受多次深度伪造的影响,只需要128张训练面部图像就可以保护无数的面部图像。
  • 提出了一种简单而有效的扰动融合策略来缓解冲突,并增强所提出的图像级和模型级可转移性CMUA-watermark。
  • 分析跨模型优化过程,并开发了一种自动步长调优算法,以找到适合不同模型的攻击步长。

3、方法

3.1 整体流程

在这里插入图片描述
给定不同的人脸图片 X 1 , . . . , X o X_1,...,X_o X1,...,Xo,不同的deepfake合成方法 G 1 , . . . , G m G_1,...,G_m G1,...,Gm,

  • 输入图像批次迭代地通过PGD攻击产生对抗扰动,重复执行小批量(为了更快的搜索)的跨模型通用攻击,评估生成的CMUA - Watermark,然后使用自动调整步长来选择新的攻击步长 a 1 , . . . a m a_1,...a_m a1,...am
  • 然后通过两级扰动融合机制组合成融合的CMUA - Watermark,作为下一个模型的初始扰动;使用发现的步长 a 1 , . . . a m a_1,...a_m a1,...am进行大批量(为了提高扰乱能力)的跨模型通用攻击,并生成最终的CMUA - Watermark。

3.2 如何破坏单个面部修改模型 G G G

在这里插入图片描述
将一批干净图像 I 1 , . . . , I n I_1,...,I_n I1,...,In输入到 Deepfake 模型 G G G中,并获得原始输出 G ( I 1 ) . . . G ( I n ) G(I_1)...G(I_n) G(I1)...G(In)。然后,我们输入 I 1 , . . . , I n I_1,...,I_n I1,...,In以及初始对抗性扰动 W W W G G G,得到初始扭曲输出 G ( I 1 + W ) . . . G ( I n + W ) G(I_1 + W )...G(I_n + W ) G(I1+W)...G(In+W)。随后,我们利用均方误差 (MSE) 来测量 G ( I 1 ) . . . G ( I n ) G(I_1)...G(I_n) G(I1)...G(In) G ( I 1 + W ) . . . G ( I n + W ) G(I_1 + W )...G(I_n + W ) G(I1+W)...G(In+W)之间的差异
m a x W ∑ i = 1 n M S E ( G ( I i ) , G ( I i + W ) ) , s . t . ∥ W ∥ ∞ ≤ ϵ \underset{W}{max}\sum_{i=1}^{n}MSE(G(I_i),G(I_i+W)),s.t.\left \| W \right \|\infty \le \epsilon Wmaxi=1nMSE(G(Ii),G(Ii+W)),s.t.Wϵ
其中 ϵ \epsilon ϵ是对抗性水印 W W W的上限大小。最后,我们使用 PGD 作为基本攻击方法,在每次攻击迭代时更新对抗性扰动
I a d v 0 = I + W I_{adv}^{0} = I+W Iadv0=I+W
I a d v r + 1 = c l i p I , ϵ { I a d v r + a ⋅ s i g n ( ▽ I L ( G ( I a d v r ) , G ( I ) ) ) } I_{adv}^{r+1} = clip_{I,\epsilon }\left \{ I_{adv}^{r}+a\cdot sign(\bigtriangledown _I L(G(I_{adv}^{r}),G(I))) \right \} Iadvr+1=clipI,ϵ{Iadvr+asign(IL(G(Iadvr),G(I)))}

其中 I I I是干净的面部图像, I a d v r I_{adv}^{r} Iadvr是第 r 次迭代中的对抗性面部图像, a a a 是基本攻击的步长, L L L 是损失函数(MSE), G G G是我们攻击的人脸修改网络,操作剪辑将 I a d v I_{adv} Iadv限制在 [ I − ϵ , I + ϵ ] [I − \epsilon, I +\epsilon ] [Iϵ,I+ϵ]范围内。

通过这个过程,可以获得单图像对抗水印(SIA-Watermarks),保护一张面部图像免受特定深度伪造模型的影响。然而,精心制作的SIA-Watermarks在跨模型设置下是不够的;它们缺乏图像和模型级别的可移植性

论文中代码

代码位置:attacks.py

class LinfPGDAttack(object):
    def __init__(self, model=None, device=None, epsilon=0.05, k=10, a=0.01, star_factor=0.3, attention_factor=0.3, att_factor=2, HiSD_factor=1, feat=None, args=None):
    #epsilon: 攻击强度,即扰动的最大幅度。k: 攻击迭代次数。a: 每次迭代的步长。
        """
        FGSM, I-FGSM and PGD attacks
        epsilon: magnitude of attack
        k: iterations
        a: step size
        """
        self.model = model
        self.epsilon = epsilon
        self.k = k
        self.a = a
        self.loss_fn = nn.MSELoss().to(device)
        self.device = device

        # Feature-level attack? Which layer?
        self.feat = feat

        # PGD or I-FGSM?
        self.rand = True

        # Universal perturbation
        self.up = None
        self.att_up = None
        self.attention_up = None
        self.star_up = None
        self.momentum = args.momentum
        
        #factors to control models' weights
        self.star_factor = star_factor
        self.attention_factor = attention_factor
        self.att_factor = att_factor
        self.HiSD_factor = HiSD_factor
    def perturb(self, X_nat, y, c_trg):
        """
        Vanilla Attack.
        """
        if self.rand:
        #如果 self.rand 为真,则在原始输入上添加一个在 [-epsilon, epsilon] 范围内的随机扰动。
            X = X_nat.clone().detach_() + torch.tensor(np.random.uniform(-self.epsilon, self.epsilon, X_nat.shape).astype('float32')).to(self.device)
        else:
            X = X_nat.clone().detach_()
        for i in range(self.k):
            #每次迭代,将 X 标记为需要梯度
            X.requires_grad = True
            #通过模型计算输出 output 和特征 feats
            output, feats = self.model(X, c_trg)
            if self.feat:
                output = feats[self.feat]
            #将模型的梯度清零
            self.model.zero_grad()
            # Minus in the loss means "towards" and plus means "away from"
            #计算损失,并对损失进行反向传播以获得梯度
            loss = self.loss_fn(output, y)
            loss.backward()
            #根据梯度方向更新输入 X
            grad = X.grad
            X_adv = X + self.a * grad.sign()
            #使用 epsilon 对扰动进行裁剪,并确保输入在 [-1, 1] 范围内
            eta = torch.clamp(X_adv - X_nat, min=-self.epsilon, max=self.epsilon)
            X = torch.clamp(X_nat + eta, min=-1, max=1).detach_()

        self.model.zero_grad()

        return X, X - X_nat

3.3 对抗扰动融合

不同图像和模型生成的对抗水印之间的冲突会降低CMUA-Watermark的可移植性。
为了减弱这种冲突,提出了攻击过程中的两级扰动融合策略。
1、当我们攻击一个特定的深度伪造模型时,我们进行一个图像级别的融合来平均来自一组面部图像的符号梯度
G a v g = ∑ j b s s i g n ( ▽ I j L ( G ( I j a d v , G ( I j ) ) ) b s G_{avg} = \frac{ {\textstyle \sum_{j}^{bs}sign(\bigtriangledown _{I_j}L(G(I_{j}^{adv},G(I_j)))} }{bs} Gavg=bsjbssign(IjL(G(Ijadv,G(Ij)))
其中 b s bs bs 是面部图像的批次大小, I j a d v I_{j}^{adv} Ijadv是批次中的第 j 个对抗图像。此操作将使 G a v g G_{avg} Gavg更加关注人脸的共同属性,而不是特定人脸的属性。然后,我们使用 PGD 通过 G a v g G_{avg} Gavg生成对抗性扰动 P a v g P_avg Pavg,如式3.2所示。

2、从一个模型获得 P a v g P_{avg} Pavg后,我们进行模型级融合,将特定模型生成的 P a v g P_{avg} Pavg迭代地结合到训练中的 W C M U A W_{CMUA} WCMUA中,初始 W C M U A W_{CMUA} WCMUA就是根据第一个deepfake模型计算出的 P a v g P_{avg} Pavg
W C M U A 0 = P a v g 0 W_{CMUA}^{0} = P_{avg}^{0} WCMUA0=Pavg0

W C M U A t + 1 = α ⋅ W C M U A t + ( 1 − α ) ⋅ P a v g t W_{CMUA}^{t+1} = \alpha \cdot W_{CMUA}^{t}+(1-\alpha )\cdot P_{avg}^{t} WCMUAt+1=αWCMUAt+(1α)Pavgt

其中 α \alpha α是衰减因子, P a v g t P_{avg}^{t} Pavgt是第t次攻击deepfake模型生成的平均扰动, W C M U A t W_{CMUA}^{t} WCMUAt是第t次攻击deepfake模型后的训练CMUA-Watermark。

3.4 基于TPE的自动步长调整

除了上面提到的两级融合之外,我们发现不同模型的攻击步长对于生成的 CMUA-Watermark 的可转移性也很重要。因此,我们利用启发式方法来自动找到合适的攻击步长。
根据公式3.2可知,整体优化方向受 a 1 , . . . a m a_1,...a_m a1,...am影响较大,跨模型选择合适的 a 1 , . . . a m a_1,...a_m a1,...am以找到理想的整体方向是跨模型攻击的关键问题。

这里引入TPE(Bergstra et al. 2011)算法来解决这个问题,自动搜索合适的 a 1 , . . . a m a_1,...a_m a1,...am来平衡多个模型计算出的不同方向。 TPE是一种基于序列模型优化(SMBO)的超参数优化方法,它根据历史测量值顺序构建模型来近似超参数的性能,然后基于该模型选择新的超参数进行测试。在我们的任务中,我们将步长 a 1 , . . . a m a_1,...a_m a1,...am视为输入超参数 x,将攻击的成功率视为 TPE 的相关质量得分 y。 TPE使用 P ( x ∣ y ) P(x|y) P(xy) P ( y ) P(y) P(y)来建模 P ( y ∣ x ) P(y|x) P(yx), P ( x ∣ y ) P(x|y) P(xy)由下式给出:
p ( x ∣ y ) = { l ( x ) i f y < y ∗ g ( x ) , i f y ≥ y ∗ p(x|y) = \left\{\begin{matrix} l(x) & if\quad y< y^*\\ g(x), & if\quad y \ge y^* \end{matrix}\right. p(xy)={l(x)g(x),ify<yifyy
其中 y ∗ y^* y由历史上最好的观测值确定, l ( x ) l(x) l(x)是由观测值 x ( i ) {x^{(i)}} x(i)形成的密度,使得相应的损失低于 y ∗ y^* y g ( x ) g(x) g(x) 是由观测值形成的密度剩余的观察结果。对 P ( y ∣ x ) P (y|x) P(yx) 进行建模后,我们通过优化每次搜索迭代中的预期改进 (EI) 标准来不断寻找更好的步长。具体的细节,可以查看TPE的论文。

4、攻击效果

4.1 对比现有方法

我们的方法在所有模型上都取得了优异的性能。
所提出的方法比现有方法具有更好的图像级和模型级可移植性。
在这里插入图片描述

4.2 ϵ \epsilon ϵ设置的影响

在这里插入图片描述
当参数 ϵ \epsilon ϵ变大时,生成的假人脸图像更加扭曲,意味着防护性能变得更好。然而,当变得太大时,产生的对抗性水印更有可能被看到。我们根据经验发现,设置在 0.05 左右可以在保护性能和生成的对抗性水印的不可察觉性之间取得良好的权衡。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/697627.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

go语言后端开发学习(三)——基于validator包实现接口校验

前言 在我们开发模块的时候,有一个问题是我们必须要去考虑的&#xff0c;它就是如何进行入参校验&#xff0c;在gin框架的博客中我就介绍过一些常见的参数校验&#xff0c;大家可以参考gin框架学习笔记(四) ——参数绑定与参数验证&#xff0c;而这个其实也不是能够完全应对我…

智慧交通的神经中枢:利用ARMxy进行实时交通流数据采集

气候变化和水资源日益紧张&#xff0c;精准农业成为了提高农业生产效率、节约资源的关键。在这一变革中&#xff0c;ARMxy工业计算机扮演了核心角色&#xff0c;特别是在智能灌溉系统的实施中。 背景介绍&#xff1a; 某大型农场面临着灌溉效率低、水资源浪费严重的问题。传统的…

怎样快速获取Vmware VCP 证书,线上考试,voucher报名优惠

之前考一个VCP证书&#xff0c;要花大一万的费用&#xff0c;可贵了&#xff0c;考试费不贵&#xff0c;贵就贵在培训费&#xff0c;要拿到证书&#xff0c;必须交培训费&#xff0c;即使vmware你玩的很溜&#xff0c;不需要再培训了&#xff0c;但是一笔贵到肉疼的培训费你得拿…

(BAT向)Java岗常问高频面试汇总:MyBatis 微服务 Spring 分布式 MySQL等(1)

6.开启 Spring Boot 特性有哪几种方式&#xff1f; 7.Spring Boot 需要独立的容器运行吗&#xff1f; 8.运行 Spring Boot 有哪几种方式&#xff1f; 9.Spring Boot 自动配置原理是什么&#xff1f; 10.Spring Boot 2.X 有什么新特性&#xff1f;与 1.X 有什么区别&#xff1f;…

LeetCode74.搜索二维矩阵

各位客官们&#xff0c;大家好&#xff0c;今天我将给大家讲一个关于二维搜索矩阵的简单方法&#xff0c;大家如果觉得好的话不妨给个免费点赞吧^ _ ^. 题目要求&#xff0c;如图所示: 此题我用的是堆的形式直接把二维数组转为一级数组&#xff0c;然后再用二分查找的方式&am…

牛客热题:不同的路径数目(一)

&#x1f4df;作者主页&#xff1a;慢热的陕西人 &#x1f334;专栏链接&#xff1a;力扣刷题日记 &#x1f4e3;欢迎各位大佬&#x1f44d;点赞&#x1f525;关注&#x1f693;收藏&#xff0c;&#x1f349;留言 文章目录 牛客热题&#xff1a;不同的路径数目(一)题目链接方法…

R语言统计分析——图形的简单示例

参考资料&#xff1a;R语言实战【第2版】 1、示例一 # 绑定数据框mtcars attach(mtcars)# 打开一个图形窗口并生成一个散点图plot(wt,mpg)# 添加一条最优拟合曲线abline(lm(mpg~wt))# 添加标题title("Regression of MPG on weight") # 解除数据框绑定 detach(mtcar…

OpenAI 宕机事件:GPT 停摆的影响与应对

引言 2024年6月4日&#xff0c;OpenAI 的 GPT 模型发生了一次全球性的宕机&#xff0c;持续时间长达8小时。此次宕机不仅影响了OpenAI自家的服务&#xff0c;还导致大量用户涌向竞争对手平台&#xff0c;如Claude和Gemini&#xff0c;结果也导致这些平台出现故障。这次事件的广…

VMware Workstation Pro的最新下载地址

前言 VMware被Broadcom收购后现在的下载方式也改变了&#xff0c;Workstation Pro 和 Fusion Pro 产品现在起将免费供个人用户使用下载方式 首先先把下载地址打开 https://support.broadcom.com/group/ecx/productdownloads?subfamilyVMwareWorkstationPro 打开链接&#xff…

开源VisualFreebasic中文版,vb7 IDE,VB6升级64位跨平台开发安卓APP,Linux程序

吴涛老矣&#xff0c;社区苦无64位易语言&#xff0c;用注入DLL增强菜单&#xff0c;做成VS一样的界面 终归是治标不治本&#xff0c;一来会报毒&#xff0c;二来闭源20年没更新了 开源的VB7&#xff0c;欢迎易语言的铁粉进群&#xff1a;1032313876 【Freebasic编程语言】编绎…

cve_2017_12635-CouchDB垂直权限绕过

1.采用参考 https://www.cnblogs.com/mlxwl/p/16577781.html vulfocus&#xff1a;Vulfocus 漏洞威胁分析平台 2.产生原因 在2017年11月15日&#xff0c;CVE-2017-12635和CVE-2017-12636披露&#xff0c;CVE-2017-12635是由于Erlang和JavaScript对JSON解析方式的不同&#…

SOA的设计模式_3.微服务模式

SOA的架构中&#xff0c;复杂的ESB企业服务总线依然处于非常重要的位置&#xff0c;整个系统的架构并没有实现完全的组件化以及面向服务&#xff0c;它的学习和使用门槛依然偏高。而微服务不再强调传统SOA架构里面比较重的ESB企业服务总线&#xff0c;同时SOA的思想进入到单个业…

Docker | 入门:原理探究

Docker | 入门&#xff1a;原理探究 Run 的运行流程 Docker 底层原理 Docker 是怎么工作的&#xff1f; Docker 是一个 Client-Server 结构的系统&#xff0c;Docker 的守护进程运行在主机上&#xff0c;通过 Socket 从客户端访问。DockerServer 接受到 Docker-Client 的指令…

数据仓库技术及应用(Hive索引)

1.概述 将数据库表中的一列或者多列的值进行排序存储&#xff1b;用索引表记录字段的索引和偏移量&#xff0c;方便查询索引列时能快速定位到对应的行记录&#xff1b;索引类似于图书的目录&#xff0c;可以根据目录页码快速定位。 2.执行流程 &#xff08;1&#xff09;不使…

数据挖掘丨轻松应用RapidMiner机器学习内置数据分析案例模板详解(上篇)

RapidMiner 案例模板 RapidMiner 机器学习平台提供了一个可视化的操作界面&#xff0c;允许用户通过拖放的方式构建数据分析流程。 RapidMiner目前内置了 13 种案例模板&#xff0c;这些模板是预定义的数据分析流程&#xff0c;可以帮助用户快速启动和执行常见的数据分析任务。…

linux:centos7升级libstdc++版本到3.4.26

下载&#xff0c;解压 wget http://www.vuln.cn/wp-content/uploads/2019/08/libstdc.so_.6.0.26.zip unzip libstdc.so_.6.0.26.zip 复制到【/usr/lib64】&#xff1a; cp libstdc.so.6.0.26 /usr/lib64创建软链接 cd /usr/lib64 sln libstdc.so.6.0.26 libstdc.so.6查看一…

876. 链表的中间结点-链表

876. 链表的中间结点 - 力扣&#xff08;LeetCode&#xff09; 快慢指针 class Solution { public:ListNode* middleNode(ListNode* head) {ListNode* slow head;ListNode* fast head;while(fast ! nullptr && fast->next ! nullptr){slow slow->next;fast …

备战 清华大学 上机编程考试-冲刺前50%,倒数第5天

T1&#xff1a;多项式求和 小K最近刚刚习得了一种非常酷炫的多项式求和技巧&#xff0c;可以对某几类特殊的多项式进行运算。非常不幸的是&#xff0c;小K发现老师在布置作业时抄错了数据&#xff0c;导致一道题并不能用刚学的方法来解&#xff0c;于是希望你能帮忙写一个程序…

数据结构(常见的排序算法)

1.插入排序 1.1直接插入排序 在[0 end]区间上有序&#xff0c;然后将&#xff08;end1&#xff09;的数据与前面有序的数据进行比较&#xff0c;将&#xff08;end1&#xff09;的数据插入&#xff0c;这样[0 end1]区间上就是有序的&#xff0c;然后再向后进行比较。 例如&a…

验证码识别接口、多种样式验证码识别接口、中英文验证码识别接口

验证码识别接口、多种样式验证码识别接口、中英文验证码识别接口 本文提供一个基于OCR和机器学习的验证码识别接口&#xff0c;能够识别较复杂的中文、英文验证码&#xff0c;在OCR的基础上针对验证码进行算法优化。本接口是收费的&#xff08;最低0.5分1次调用&#xff0c;试…